首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   332篇
  免费   42篇
  374篇
  2023年   3篇
  2021年   6篇
  2019年   6篇
  2017年   4篇
  2016年   6篇
  2015年   10篇
  2014年   18篇
  2013年   10篇
  2012年   16篇
  2011年   19篇
  2010年   13篇
  2009年   10篇
  2008年   19篇
  2007年   17篇
  2006年   13篇
  2005年   13篇
  2004年   8篇
  2003年   8篇
  2002年   5篇
  2000年   12篇
  1999年   6篇
  1998年   7篇
  1997年   8篇
  1996年   7篇
  1995年   7篇
  1994年   7篇
  1993年   6篇
  1992年   2篇
  1991年   10篇
  1990年   11篇
  1989年   6篇
  1988年   2篇
  1987年   3篇
  1985年   8篇
  1984年   5篇
  1983年   4篇
  1982年   4篇
  1981年   4篇
  1980年   3篇
  1979年   3篇
  1978年   4篇
  1977年   5篇
  1976年   2篇
  1975年   3篇
  1974年   4篇
  1973年   2篇
  1972年   2篇
  1971年   4篇
  1970年   6篇
  1964年   2篇
排序方式: 共有374条查询结果,搜索用时 0 毫秒
1.
In common garden experiments, a number of genotypes are raised in a common environment in order to quantify the genetic component of phenotypic variation. Common gardens are thus ideally suited for disentangling how genetic and environmental factors contribute to the success of invasive species in their new non-native range. Although common garden experiments are increasingly employed in the study of invasive species, there has been little discussion about how these experiments should be designed for greatest utility. We argue that this has delayed progress in developing a general theory of invasion biology. We suggest a minimum optimal design (MOD) for common garden studies that target the ecological and evolutionary processes leading to phenotypic differentiation between native and invasive ranges. This involves four elements: (A) multiple, strategically sited garden locations, involving at the very least four gardens (2 in the native range and 2 in the invaded range); (B) careful consideration of the genetic design of the experiment; (C) standardization of experimental protocols across all gardens; and (D) care to ensure the biosafety of the experiment. Our understanding of the evolutionary ecology of biological invasions will be greatly enhanced by common garden studies, if and only if they are designed in a more systematic fashion, incorporating at the very least the MOD suggested here.  相似文献   
2.
Point pattern analyses such as the estimation of Ripley's K‐function or the pair‐correlation function g are commonly used in ecology to characterise ecological patterns in space. However, a major disadvantage of these methods is their missing ability to deal with spatial heterogeneity. A heterogeneous intensity of points causes a systematic bias in estimates of the K‐ and g‐functions, a phenomenon termed “virtual aggregation” in the recent literature. To address this problem, we derive a new index, called K2‐index, as an extension of existing point pattern characteristics. The K2‐index has a heuristic interpretation as an approximation to the first derivative of the g‐function. We estimate the K‐, g‐ and K2‐functions for six different types of simulated point patterns and show that the K2‐index may provide important information on point patterns that the other methods fail to detect. The results indicate that particularly the small‐scale distributions of points are better represented by the K2‐index. This might be important for testing hypotheses on ecological processes, because most of these processes, such as direct neighbour interactions, occur very locally. When applied to empirical patterns of molehill distribution, the results of the K2‐analysis show regularity up to distances between 0.1 and 0.4 m in most of the study areas, and aggregation of molehills up to distances between 0.2 and 1.1 m. The type and scale of these deviations from randomness agree with a priori expectations on the hill‐building behaviour of moles. In contrast, the estimated g‐functions merely indicate aggregation at the full range from 0 to 7 m (or even above). Considering the advantages and disadvantages of the different methods, we suggest that the K2‐index should be used as a complement to existing approaches, particularly for point patterns generated by processes that act on more than one scale.  相似文献   
3.
4.
    
Demographic processes and demographic data are increasingly being included in models of the spatio–temporal dynamics of species’ ranges. In this special issue, we explore how the integration of demographic processes further the conceptual understanding and prediction of species’ range dynamics. The 12 papers originate from two workshops entitled ‘Advancing concepts and models of species range dynamics: understanding and disentangling processes across scales’. The papers combine theoretical and empirical evidence for the interplay between environmental conditions, species interactions, demographic processes (births, deaths, dispersal), physiology, and evolution, and they point out promising avenues towards a better understanding and prediction of species’ range dynamics.  相似文献   
5.

Background

There is a large body of literature on competitive interactions among plants, but many studies have only focused on above-ground interactions and little is known about root–root dynamics between interacting plants. The perspective on possible mechanisms that explain the outcome of root–root interactions has recently been extended to include non-resource-driven mechanisms (as well as resource-driven mechanisms) of root competition and positive interactions such as facilitation. These approaches have often suffered from being static, partly due to the lack of appropriate methodologies for in-situ non-destructive root characterization.

Scope

Recent studies show that interactive effects of plant neighbourhood interactions follow non-linear and non-additive paths that are hard to explain. Common outcomes such as accumulation of roots mainly in the topsoil cannot be explained solely by competition theory but require a more inclusive theoretical, as well as an improved methodological framework. This will include the question of whether we can apply the same conceptual framework to crop versus natural species.

Conclusions

The development of non-invasive methods to dynamically study root–root interactions in vivo will provide the necessary tools to study a more inclusive conceptual framework for root–root interactions. By following the dynamics of root–root interactions through time in a whole range of scenarios and systems, using a wide variety of non-invasive methods, (such as fluorescent protein which now allows us to separately identify the roots of several individuals within soil), we will be much better equipped to answer some of the key questions in root physiology, ecology and agronomy.  相似文献   
6.
7.
8.
The arginine vasopressin V1a receptor gene (AVPR1A) has been implicated in increased partner preference and pair bonding behavior in mammalian lineages. This observation is of considerable importance for studies of social monogamy, which only appears in a small subset of primate taxa, including the Argentinean owl monkey (Aotus azarai). Thus, to investigate the possible influence of AVPR1A on the evolution of social behavior in owl monkeys, we sequenced this locus in a wild population from the Gran Chaco. We also assessed the interspecific variation of AVPR1A in platyrrhine species that represent a set of phylogenetically and behaviorally disparate taxa. The resulting data revealed A. azarai to have a unique genic structure for AVPR1A that varies in coding sequence and microsatellite repeat content relative to other primate and mammalian species. Specifically, one repetitive region that has been the focus in studies of human AVPR1A diversity, “RS3,” is completely absent in A. azarai and all other platyrrhines examined. This finding suggests that, if AVPR1A modulates behavior in owl monkeys and other neotropical primates, it does so independent of this region. These observations have also provided clues about the process by which the range of social behavior in the Order Primates evolved through lineage-specific neurogenetic variation.  相似文献   
9.
    
  相似文献   
10.
In cells stably transfected and overexpressing the mouse mdr1 gene, multidrug resistance is associated with an increased ATP-dependent drug efflux. Analysis of the predicted amino acid sequence of the MDR1 protein revealed the presence of two putative nucleotide-binding sites (NBS). To assess the functional importance of these NBS in the overall drug resistance phenotype conferred by mdr1, we introduced amino acid substitutions in the core consensus sequence for nucleotide binding, GXGKST. Mutants bearing the sequence GXAKST or GXGRST at either of the two NBS of mdr1 and a double mutant harboring the sequence GXGRST at both NBS were generated. The integrity of the two NBS was essential for the biological activity of mdr1, since all five mutants were unable to confer drug resistance to hamster drug-sensitive cells in transfection experiments. Conversely, a lysine-to-arginine substitution outside the core consensus sequence had no effect on the activity of mdr1. Failure to reduce intracellular accumulation of [3H]vinblastine paralleled the loss of activity in cell clones expressing mutant MDR1 proteins. However, the ability to bind the photoactivatable ATP analog 8-azido ATP was retained in the five inactive MDR1 mutants. This result implies that an essential step subsequent to ATP binding is impaired in these mutants, possibly ATP hydrolysis or secondary conformational changes induced by ATP-binding or hydrolysis. Our results suggest that the two NBS function in a cooperative fashion, since mutations in a single NBS completely abrogated the biological activity of mdr1.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号