首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   23篇
  免费   5篇
  2010年   2篇
  2009年   1篇
  2007年   1篇
  2006年   1篇
  2005年   1篇
  2000年   1篇
  1996年   1篇
  1993年   1篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
  1988年   2篇
  1987年   2篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1981年   1篇
  1979年   2篇
  1977年   2篇
  1973年   1篇
  1972年   1篇
  1969年   1篇
排序方式: 共有28条查询结果,搜索用时 125 毫秒
1.
A fixed-bed loop, high-rate anaerobic bioreactor treating sulfite evaporator condensate was sampled when it reached steady state and afterwards following perturbations during a 14-month period. By using immunotechnology, it was observed that shifts in methanogenic subpopulations occurred in association with perturbations, such as restarting and relocating the biomass into a different tank. Methanogens related to Methanobacterium bryantii MoHG and Methanobrevibacter smithii ALI were numerous throughout the observation period, while Methanosarcina mazei S6 and Methanosarcina thermophila TM1 were found in the early and late samples, respectively. Also, Methanobacterium formicicum was more numerous at the top portion of the bioreactor, while Methanobrevibacter arboriphilus AZ and DC were at the bottom. Sample formalinization required for prolonged storage proved suitable for antigen preservation.  相似文献   
2.
The conversion of lactose — the main constituent of whey — to methane and carbon dioxide was studied using different defined constructed cultures, imploying strains of Methanosarcina barkeri, Methanobacterium bryantii, Escherichia coli, Acetobacterium woodii, Lactobacillus casei, and Lactobacillus plantarum. The following combinations of strains (food chains) were studied with respect to efficiency and yield of lactose conversion (methane yield in parentheses): E. coli and M. barkeri (4.5–7.6%), E. coli and M. bryantii (13.3%),E. coli, M. barkeri and M. bryantii (54%), L. casei, A. woodii and M. barkeri (93.3%). These conversions were carried out in pH controlled batch fermentations. A very efficient coculture was a combination of L. plantarum with A. woodii and M. barkeri: in chemostat cultures lactose was converted to methane and carbon dioxide with a yield of about 90%, at dilution rates of 0.27 d-1to 0.37 d-1.  相似文献   
3.
For the first time, unidirectional rate constants of ethanol diffusion through the lipid membrane of a microorganism, the bacterium Zymomonas mobilis, were determined, thus replacing indirect inferences with direct kinetic data. The rate constants k1 (in to out) were 6.8 +/- 0.4s(-1) at 29 degrees C and 2.7 +/- 0.3s(-1) at 20 degrees C. They were determined by using 1H selective nuclear magnetic resonance spin magnetization transfer. The measurements were done on l-ml cell suspensions. No addition of radiotracers, withdrawing of aliquots, physical separation methods, or chemical manipulations were required. Until now, the rate constants of ethanol transport in microorganisms have been unknown because ethanol diffuses through the cytoplasmic membrane too quickly for radiolabel approaches. Net velocities of ethanol exchange were calculated from unidirectional rate constants and cytoplasmic volume, which was also determined with the same nuclear magnetic resonance experiments. The results (i) confirmed that ethanol would not be rate limiting during the conversion of glucose by Z. mobilis and (ii) indicated that ethanol can serve as an in vivo marker of cytoplasmic volume changes. This was verified by monitoring for the first time the changes of both cytoplasmic volume and extracytoplasmic and cytoplasmic concentrations of alpha and beta anomers of D-glucose in cell suspensions of a microorganism. These findings may open up new possibilities for kinetic studies of ethanol and sugar transport in Z. mobilis and other organisms.  相似文献   
4.
Abstract The time course of photobleaching and the nanosecond fluorescence decay have been measured from microscopic samples of methanogenic bacteria, to our knowledge the first application of these methods in this field. Decay times of about 1 ns and 3 ns were obtained for the specific coenzymes F420 and 7-methylpterin, respectively. In contrast to methylpterin and other fluorescent compounds the intensity of F420 fluorescence was reduced selectively due to photobleaching. This effect, as well as the different decay time constants could be used to discriminate F420 from other fluorescent components. In addition, active and inactive bacterial cells could be differentiated following the course of photobleaching.  相似文献   
5.
The Corynebacterium glutamicum gene cg2091 is encoding a polyphosphate (PolyP)/ATP-dependent glucokinase (PPGK). Previous work demonstrated the association of PPGK to PolyP granules. The deduced amino acid sequence of PPGK shows 45% sequence identity to PolyP/ATP glucomannokinase of Arthrobacter sp. strain KM and 50% sequence identity to PolyP glucokinase of Mycobacterium tuberculosis H37Rv. PPGK from C. glutamicum was purified from recombinant Escherichia coli. PolyP was highly preferred over ATP and other NTPs as substrate and with respect to the tested PolyPs differing in chain length; the protein was most active with PolyP75. Gel filtration analysis revealed that PolyP supported the formation of homodimers of PPGK and that PPGK was active as a homodimer. A ppgK deletion mutant (ΔppgK) showed slowed growth in minimal medium with maltose as sole carbon source. Moreover, in minimal medium containing 2 to 4% (w/v) glucose as carbon source, ΔppgK grew to lower final biomass concentrations than the wild type. Under phosphate starvation conditions, growth of ΔppgK was reduced, and growth of a ppgK overexpressing strain was increased as compared to wild type and empty vector control, respectively. Thus, under conditions of glucose excess, the presence of PPGK entailed a growth advantage.  相似文献   
6.
The high specificity and sensitivity of fluorescence techniques have made them important analytical tools in medicine and biotechnology. Besides monitoring and quantitative detection of biomolecules these methods can be used for controlling bacterial activities or for measuring physiological states of cells or tissues. Three topics of importance in biotechnology — immunoassays, photosynthesis and fermentation — are treated in detail.  相似文献   
7.
Corynebacterium glutamicum accumulates up to 300 mM of inorganic polyphosphate (PolyP) in the cytosol or in granules. The gene products of cg0488 (ppx1) and cg1115 (ppx2) were shown to be active as exopolyphosphatases (PPX), as overexpression of either gene resulted in higher exopolyphosphatase activities in crude extracts and deletion of either gene with lower activities than those of the wild-type strain. PPX1 and PPX2 from C. glutamicum share only 25% identical amino acids and belong to different protein groups, which are distinct from enterobacterial, archaeal, and yeast exopolyphosphatases. In comparison to that in the wild type, more intracellular PolyP accumulated in the Δppx1 and Δppx2 deletion mutations but less when either ppx1 or ppx2 was overexpressed. When C. glutamicum was shifted from phosphate-rich to phosphate-limiting conditions, a growth advantage of the deletion mutants and a growth disadvantage of the overexpression strains compared to the wild type were observed. Growth experiments, exopolyphosphatase activities, and intracellular PolyP concentrations revealed PPX2 as being a major exopolyphosphatase from C. glutamicum. PPX2His was purified to homogeneity and shown to be active as a monomer. The enzyme required Mg2+ or Mn2+ cations but was inhibited by millimolar concentrations of Mg2+, Mn2+, and Ca2+. PPX2 from C. glutamicum was active with short-chain polyphosphates, even accepting pyrophosphate, and was inhibited by nucleoside triphosphates.Inorganic polyphosphate (PolyP), a linear polymer made of up to hundreds of orthophosphate residues (Pi), has been found in all organisms tested for its presence (3, 4, 7, 12, 20, 22, 48). In nature''s phosphorus cycle, diatom-derived PolyP has recently been shown to be critically important for marine phosphorus sequestration (6). In cells, PolyP may function as a means of storage of phosphorus and/or energy, may substitute ATP in kinase reactions, and was shown to be important in response to many stresses. Mutants of Escherichia coli, Pseudomonas aeruginosa, Shigella spp., Salmonella spp., Vibrio cholerae, and Helicobacter pylori with a low PolyP content showed defects in environmental stress responses and/or virulence (2, 14, 17, 38). In amino acid-starved E. coli, PolyP accumulates and is bound by Lon protease, which degrades ribosomal proteins to liberate amino acids (23).The presence of PolyP granules is used as a diagnostic criterion to distinguish the pathogenic Corynebacterium diphtheriae from nonpathogenic corynebacteria, such as Corynebacterium glutamicum (54). However, these metachromatic granules have recently been shown to be present also in nonpathogenic C. glutamicum (33). When sufficient phosphate is available, C. glutamicum accumulates up to 300 mM of PolyP (24) either soluble in the cytosol or in volutin granules (18, 33). During growth of C. glutamicum on glucose, intracellular PolyP concentrations peaked in the early exponential growth phase and at the entry to stationary phase (18). Soluble PolyP prevailed in the stationary growth phase, while PolyP occurred in granules in the early exponential growth phase (18). C. glutamicum is widely used for the biotechnological production of about 2,200,000 tons of amino acids per year, mainly l-glutamate and l-lysine (50, 58), while the related Corynebacterium ammoniagenes is used for the production of the flavor-enhancing purine nucleotides IMP and XMP (30). As it is conceivable that engineering corynebacterial PolyP metabolism affects overproduction of amino acids or of the phosphorus-containing compounds IMP and XMP, the study of PolyP metabolism and the enzymes involved has recently received increasing attention.PolyP formation in C. glutamicum was shown to be stimulated by MgCl2 (33), probably due to the magnesium dependence of PolyP synthesizing enzymes (27). In microorganisms, PolyP may be synthesized by PolyP kinases belonging to three distinct families (PPK1, PPK2, and PPK3; EC 2.7.4.1) from ATP or other nucleoside triphosphates (NTPs) in a reversible reaction (12). C. glutamicum possesses two PPK2 genes (ppk2A and ppk2B) (27). Purified PPK2B of C. glutamicum is active as a homotetramer and shows higher catalytic efficiency in the PolyP-forming direction than in the reverse direction, forming NTPs from PolyP. The intracellular PolyP content was increased by overexpression of ppk2B and decreased in the absence of PPK2B (27). Besides PPK2B, no other PolyP-dependent enzyme has been characterized in C. glutamicum, although the cg2091 gene product, a putative PolyP-dependent glucokinase (EC 2.7.1.63), was found to be associated with PolyP granules (33).Degradation of PolyP by hydrolysis may be catalyzed by exopolyphosphatases (PPX) (EC 3.6.1.11) and/or endopolyphosphatases (PPN) (EC 3.6.1.10) (1, 49). Exopolyphosphatases hydrolyze PolyP from the chain''s termini, liberating Pi. The C. glutamicum genome contains two genes encoding putative exopolyphosphatases (ppx1-cg0488 and ppx2-cg1115) (15), but their functions have not yet been characterized. The corresponding proteins are distinct from each other as they share only 25% identical amino acids. Both proteins show 25% amino acid identity to E. coli PPX (1), which possesses 200 additional C-terminal amino acids (56). Here, we have analyzed PolyP degradation in C. glutamicum and show that both cg0488 (ppx1) and cg1115 (ppx2) gene products are functional exopolyphosphatases. Growth experiments, determination of exopolyphosphatase activities, and intracellular PolyP concentrations in strains lacking or overexpressing these genes revealed that cg1115 (ppx2) encodes the major exopolyphosphatase of C. glutamicum, which was characterized enzymatically.  相似文献   
8.
Recent microbiological findings show how compounds, regarded hitherto as unusual substrates for anaerobic bacteria, are degraded under anaerobic conditions. The complete conversion of halobenzoic acids and halophenolic compounds to methane by lake sediment and sewage sludge microorganisms has been demonstrated. Since haloaromatic compounds are widely used and may be found in such effluents as those from the forest industry, these studies could stimulate a broader interest in anaerobic treatment of industrial waste waters which contain unusual organic compounds.  相似文献   
9.
Summary Four clostridial species (C. pasteurianum, C. butylicum, C. butyricum and C. tetanomorphum) grow on pyruvate. Two other species (C. roseum and C. rubrum) only ferment this compound; this is probably due to their inability to synthesize hexose phosphates from pyruvate (fructose-1,6-diphosphatase and pyruvate carboxylase are absent).The fermentation of pyruvate by the above clostridia yields acetate, carbon dioxide, hydrogen and small amounts of compounds more reduced than acetate. Hydrogen pressure increases the amount of ethanol, butanol and butyrate formed during the fermentation of pyruvate. Since C. roseum and C. rubrum contain a ferredoxin: NADP reductase it seems likely that NADPH2 is the coenzyme involved in ethanol formation. In accordance with this acetaldehyde and alcohol dehydrogenases exhibit activity with NADPH2.The glyceraldehyde-3-phosphate dehydrogenase of the clostridia under investigation is NAD specific and so is the -hydroxy-butyryl-CoA dehydrogenase with the exception of C. kluyveri.The specific activity of hydrogenase and the coenzyme specificity of NAD(P) reductase vary among the clostridial species.  相似文献   
10.
Enumeration of bacteria forming acetate from H2 and CO2 in anaerobic habitats   总被引:13,自引:0,他引:13  
A method has been worked out that allows the detection and isolation of bacteria fermenting molecular hydrogen and carbon dioxide to acetic acid.The ratio of methanogenic to acetogenic bacteria in sludge and lake sediment samples has been found to be approximately 100 to 1. Acetogenic bacteria could not be detected in rumen samples.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号