首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16篇
  免费   0篇
  2014年   1篇
  2011年   1篇
  2005年   1篇
  2004年   1篇
  2002年   1篇
  2000年   1篇
  1999年   1篇
  1995年   1篇
  1994年   2篇
  1991年   1篇
  1990年   1篇
  1989年   2篇
  1988年   1篇
  1987年   1篇
排序方式: 共有16条查询结果,搜索用时 15 毫秒
1.
2.
Thirty-two partial phytochrome sequences from algae, mosses, ferns, gymnosperms, and angiosperms (11 of them newly released ones from our laboratory) were analyzed by distance and characterstate approaches (PHYLIP, TREECON, PAUP). In addition, 12 full-length sequences were analyzed. Despite low bootstrap values at individual internal nodes, the inferred trees (neighbor joining, Fitch, maximum parsimony) generally showed similar branching orders consistent with other molecular data. Lower plants formed two distinct groups. One basal group consisted of Selaginella, Equisetum, and mosses; the other consisted of a monophyletic cluster of frond-bearing pteridophytes. Psilotum was a member of the latter group and hence perhaps was not, as sometimes suggested, a close relative of the first vascular plants. The results further suggest that phytochrome gene duplication giving rise to a- and b- and later to c-types may have taken place within seedfern genomes. Distance matrices dated the separation of mono- and dicotyledons back to about 260 million years before the present (Myr b.p.) and the separation of Metasequoia and Picea to a fossil record-compatible value of 230 Myr B.P. The Ephedra sequence clustered with the c- or a-type and Metasequoia and Picea sequences clustered with the b-type lineage. The paleoherb Nymphaea branched off from the c-type lineage prior to the divergence of mono- and dicotyledons on the a- and b-type branches. Sequences of Piper (another paleoherb) created problems in that they branched off from different phytochrome lineages at nodes contradicting distance from the inferred trees' origin. Correspondence to: H.A.W. Schneider-Poetsch  相似文献   
3.
Mycalamide B (MycB) is a marine sponge-derived natural product with potent antitumor activity. Although it has been shown to inhibit protein synthesis, the molecular mechanism of action by MycB remains incompletely understood. We verified the inhibition of translation elongation by in vitro HCV IRES dual luciferase assays, ribosome assembly, and in vivo [(35)S]methinione labeling experiments. Similar to cycloheximide (CHX), MycB inhibits translation elongation through blockade of eEF2-mediated translocation without affecting the eEF1A-mediated loading of tRNA onto the ribosome, AUG recognition, or dipeptide synthesis. Using chemical footprinting, we identified the MycB binding site proximal to the C3993 28S rRNA residue on the large ribosomal subunit. However, there are also subtle, but significant differences in the detailed mechanisms of action of MycB and CHX. First, MycB arrests the ribosome on the mRNA one codon ahead of CHX. Second, MycB specifically blocked tRNA binding to the E-site of the large ribosomal subunit. Moreover, they display different polysome profiles in vivo. Together, these observations shed new light on the mechanism of inhibition of translation elongation by MycB.  相似文献   
4.
Translation initiation in eukaryotes is accomplished through the coordinated and orderly action of a large number of proteins, including the eIF4 initiation factors. Herein, we report that pateamine A (PatA), a potent antiproliferative and proapoptotic marine natural product, inhibits cap-dependent eukaryotic translation initiation. PatA bound to and enhanced the intrinsic enzymatic activities of eIF4A, yet it inhibited eIF4A-eIF4G association and promoted the formation of a stable ternary complex between eIF4A and eIF4B. These changes in eIF4A affinity for its partner proteins upon binding to PatA caused the stalling of initiation complexes on mRNA in vitro and induced stress granule formation in vivo. These results suggest that PatA will be a valuable molecular probe for future studies of eukaryotic translation initiation and may serve as a lead compound for the development of anticancer agents.  相似文献   
5.
Monoclonal antibodies to defined locations on six regions of the phytochrome molecule (from Avena sativa L. or Zea mays L.) were each found to have a different affinity toward the farred-absorbing form of phytochrome (Pfr) and the red-absorbing form (Pr). The differences were small, but were consistently shown by antibodies which bind to the vicinity of the aminoterminus, the carboxylterminus and to sequences in between. It seems that the conformational differences between Pr and Pfr extend over the whole molecule in as far as it is represented by these regions and the antibodies binding to them.Abbreviations Pfr far-red-absorbing form of phytochrome - Pr red-absorbing form of phytochrome  相似文献   
6.
Gymnosperms possess two to four phytochrome types which apparently are the result of successive gene duplications in the genomes of their common ancestors. Phytochromes are nuclear-encoded proteins whose genes, contrary to chloroplast, mitochondrion, and rRNA genes, have hitherto rarely been used to examine gymnosperm phylogenies. Since the individual phytochrome gene types implied phylogenies that were not completely congruent to one another, conflicting branching orders were sorted by the number of gene lineages present in a taxon. The Gnetatae (two gene types) branched at the base of all gymnosperms, a position supported by bootstrap sampling (distance and character state trees, maximum likelihood). The Gnetatae were followed by Ginkgo, Cycadatae, and Pinaceae (three gene types) and the remaining conifers (four gene types). Therefore, in phytochrome trees, the most ancient branch of the conifers (Pinatae) seems to be the Pinaceae. The next split appears to have separated Araucariaceae plus Podocarpaceae from the Taxaceae/Taxodiaceae/Cupressaceae group. Structural arrangements in the plastid genomes (Raubeson and Jansen 1992) corroborate the finding that there is no close connection between Pinaceae and Gnetatae as suggested by some publications. The analyses are based on 60 phytochrome genes (579 positions in an alignment of PCR fragments) from 28 species. According to rough divergence time estimates, the last common ancestor of gymnosperms and angiosperms is likely to have existed in the Carboniferous.  相似文献   
7.
8.
9.
The distribution of a 125 kg . mol?1 protein recognized by a monoclonal antibody raised against phytochrome of maize was analyzed in the sporophyte of the fern Psilotum nudum. Highest amounts (up to 5 μg per fresh weight) of this protein were found in the tips of expanding shoots. Green sporangia as well as the pale tips of the rhizome contained this 125 kg . mol?1 protein, too. In the brown parts of the rhizome it was more rarely contained. Unlike phytochrome from etiolated higher plants, the Psilotum protein appeared to be scarcely degraded by the illuminated plants. In this respect the protein of Psilotum seems to resemble the small fraction of phytochrome contained in green and illuminated higher plants. Moreover, after illuminating the Psilotum rhizome for 3 d, higher amounts of this protein were detected therein as before.  相似文献   
10.
A phytochrome-like protein was detected in extracts from the red algae Corallina elongata and Gelidium sp., from the brown algae Cystoseira abiesmarina and Cystoseira tamariscifolia, and from the green algae Ulva rigida, Enteromorpha compressa and Chara hispida. Relative amounts of the photoreversible protein were determined by measurement of Δ (ΔA) values of the crude extract. SDS gel electrophoresis and immunoblotting with monoclonal antibodies directed to phytochrome from etiolated maize and oat seedlings revealed only one phytochrome-related band with apparent molecular weight of 130 kDa. The absorption difference spectrum after partial purification showed a “normal” absorption band (λmax = 670 nm) for the Pr form but only a very weak band (λmax = 705 nm) for the “Pfr form”.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号