全文获取类型
收费全文 | 155篇 |
免费 | 27篇 |
专业分类
182篇 |
出版年
2024年 | 2篇 |
2023年 | 1篇 |
2022年 | 1篇 |
2021年 | 7篇 |
2020年 | 3篇 |
2019年 | 4篇 |
2018年 | 4篇 |
2017年 | 3篇 |
2016年 | 2篇 |
2015年 | 6篇 |
2014年 | 8篇 |
2013年 | 4篇 |
2012年 | 10篇 |
2011年 | 8篇 |
2010年 | 12篇 |
2009年 | 15篇 |
2008年 | 9篇 |
2007年 | 11篇 |
2006年 | 8篇 |
2005年 | 10篇 |
2004年 | 8篇 |
2003年 | 4篇 |
2002年 | 4篇 |
2001年 | 3篇 |
2000年 | 2篇 |
1999年 | 1篇 |
1998年 | 4篇 |
1997年 | 4篇 |
1996年 | 4篇 |
1995年 | 3篇 |
1994年 | 5篇 |
1993年 | 1篇 |
1990年 | 2篇 |
1989年 | 4篇 |
1988年 | 1篇 |
1983年 | 1篇 |
1982年 | 1篇 |
1977年 | 1篇 |
1966年 | 1篇 |
排序方式: 共有182条查询结果,搜索用时 15 毫秒
1.
2.
Background
Annotations that describe the function of sequences are enormously important to researchers during laboratory investigations and when making computational inferences. However, there has been little investigation into the data quality of sequence function annotations. Here we have developed a new method of estimating the error rate of curated sequence annotations, and applied this to the Gene Ontology (GO) sequence database (GOSeqLite). This method involved artificially adding errors to sequence annotations at known rates, and used regression to model the impact on the precision of annotations based on BLAST matched sequences.Results
We estimated the error rate of curated GO sequence annotations in the GOSeqLite database (March 2006) at between 28% and 30%. Annotations made without use of sequence similarity based methods (non-ISS) had an estimated error rate of between 13% and 18%. Annotations made with the use of sequence similarity methodology (ISS) had an estimated error rate of 49%.Conclusion
While the overall error rate is reasonably low, it would be prudent to treat all ISS annotations with caution. Electronic annotators that use ISS annotations as the basis of predictions are likely to have higher false prediction rates, and for this reason designers of these systems should consider avoiding ISS annotations where possible. Electronic annotators that use ISS annotations to make predictions should be viewed sceptically. We recommend that curators thoroughly review ISS annotations before accepting them as valid. Overall, users of curated sequence annotations from the GO database should feel assured that they are using a comparatively high quality source of information. 相似文献3.
The gl8 gene is required for the normal accumulation of cuticular waxes on maize (Zea mays) seedling leaves. The predicted GL8 protein exhibits significant sequence similarity to a class of enzymes that catalyze the reduction of a ketone group to a hydroxyl group. Polyclonal antibodies raised against the recombinant Escherichia coli-expressed GL8 protein were used to investigate the function of this protein in planta. Subcellular fractionation experiments indicate that the GL8 protein is associated with the endoplasmic reticulum membranes. Furthermore, polyclonal antibodies raised against the partially purified leek (Allium porrum) microsomal acyl-coenzyme A (CoA) elongase can react with the E. coli-expressed GL8 protein. In addition, anti-GL8 immunoglobulin G inhibited the in vitro elongation of stearoyl-CoA by leek and maize microsomal acyl-CoA elongase. In combination, these findings indicate that the GL8 protein is a component of the acyl-CoA elongase. In addition, the finding that anti-GL8 immunoglobulin G did not significantly inhibit the 3-ketoacyl-CoA synthase, 3-ketoacyl-CoA dehydrase, and (E) 2,3-enoyl-CoA reductase partial reactions of leek or maize acyl-CoA elongase lends further support to our previous hypothesis that the GL8 protein functions as a beta-ketoacyl reductase during the elongation of very long-chain fatty acids required for the production of cuticular waxes. 相似文献
4.
5.
6.
7.
Strable J Borsuk L Nettleton D Schnable PS Irish EE 《The Plant journal : for cell and molecular biology》2008,56(6):1045-1057
Vegetative phase change is the developmental transition from the juvenile phase to the adult phase in which a plant becomes competent for sexual reproduction. The gain of ability to flower is often accompanied by changes in patterns of differentiation in newly forming vegetative organs. In maize, juvenile leaves differ from adult leaves in morphology, anatomy and cell wall composition. Whereas the normal sequence of juvenile followed by adult is repeated with every sexual generation, this sequence can be altered in maize by the isolation and culture of the shoot apex from an adult phase plant: an 'adult' meristem so treated reverts to forming juvenile vegetative organs. To begin to unravel the as-yet poorly understood molecular mechanisms underlying phase change in maize, we compared gene expression in two juvenile sample types, leaf 4 and culture-derived leaves 3 or 4, with an adult sample type (leaf 9) using cDNA microarrays. All samples were leaf primordia at plastochron 6. A gene was scored as 'phase induced' if it was up- or downregulated in both juvenile sample types, compared with the adult sample type, with at least a twofold change in gene expression at a P-value of < or =0.005. Some 221 expressed sequence tags (ESTs) were upregulated in juveniles, and 28 ESTs were upregulated in adults. The largest class of juvenile-induced genes was comprised of those involved in photosynthesis, suggesting that maize plants are primed for energy production early in vegetative growth by the developmental induction of photosynthetic genes. 相似文献
8.
Ravi V Mural Marcin Grzybowski Chenyong Miao Alyssa Damke Sirjan Sapkota Richard E Boyles Maria G Salas Fernandez Patrick S Schnable Brandi Sigmon Stephen Kresovich James C Schnable 《Genetics》2021,218(3)
Community association populations are composed of phenotypically and genetically diverse accessions. Once these populations are genotyped, the resulting marker data can be reused by different groups investigating the genetic basis of different traits. Because the same genotypes are observed and scored for a wide range of traits in different environments, these populations represent a unique resource to investigate pleiotropy. Here, we assembled a set of 234 separate trait datasets for the Sorghum Association Panel, a group of 406 sorghum genotypes widely employed by the sorghum genetics community. Comparison of genome-wide association studies (GWAS) conducted with two independently generated marker sets for this population demonstrate that existing genetic marker sets do not saturate the genome and likely capture only 35–43% of potentially detectable loci controlling variation for traits scored in this population. While limited evidence for pleiotropy was apparent in cross-GWAS comparisons, a multivariate adaptive shrinkage approach recovered both known pleiotropic effects of existing loci and new pleiotropic effects, particularly significant impacts of known dwarfing genes on root architecture. In addition, we identified new loci with pleiotropic effects consistent with known trade-offs in sorghum development. These results demonstrate the potential for mining existing trait datasets from widely used community association populations to enable new discoveries from existing trait datasets as new, denser genetic marker datasets are generated for existing community association populations. 相似文献
9.
10.
Gene mapping via bulked segregant RNA-Seq (BSR-Seq) 总被引:5,自引:0,他引:5