排序方式: 共有52条查询结果,搜索用时 15 毫秒
1.
Mallikarjun S Beelagi SR Santosh Kumar Uma Bharathi Indrabalan Sharanagouda S Patil Ashwini Prasad KP Suresh Shiva Prasad Kollur Veeresh Santhebennur Jayappa Siddappa B Kakkalameli Chandrashekar Srinivasa Prabhakarareddy Anapalli Venkataravana Chandan Shivamallu 《Bioinformation》2021,17(4):479
Crimean-Congo hemorrhagic fever (CCHF) virus is one among the major zoonosis viral diseases that use the Hyalomma ticks as their transmission vector to cause viral infection to the human and mammalian community. The fatality of infectious is high across the world especially in Africa, Asia, Middle East, and Europe. This study regarding codon usage bias of S, M, and L segments of the CCHF virus pertaining to the host Homo sapiens, reveals in-depth information about the evolutionary characteristics of CCHFV. Relative Synonymous Codon Usage (RSCU), Effective number of codons (ENC) were calculated, to determine the codon usage pattern in each segment. Correlation analysis between Codon adaptation index (CAI), GRAVY (Hydrophobicity), AROMO (Aromaticity), and nucleotide composition revealed bias in the codon usage pattern. There was no strong codon bias found among any segments of the CCHF virus, indicating both the factors i.e., natural selection and mutational pressure shapes the codon usage bias. 相似文献
2.
phangorn: phylogenetic analysis in R 总被引:4,自引:0,他引:4
Schliep KP 《Bioinformatics (Oxford, England)》2011,27(4):592-593
SUMMARY: phangorn is a package for phylogenetic reconstruction and analysis in the R language. Previously it was only possible to estimate phylogenetic trees with distance methods in R. phangorn, now offers the possibility of reconstructing phylogenies with distance based methods, maximum parsimony or maximum likelihood (ML) and performing Hadamard conjugation. Extending the general ML framework, this package provides the possibility of estimating mixture and partition models. Furthermore, phangorn offers several functions for comparing trees, phylogenetic models or splits, simulating character data and performing congruence analyses. AVAILABILITY: phangorn can be obtained through the CRAN homepage http://cran.r-project.org/web/packages/phangorn/index.html. phangorn is licensed under GPL 2. 相似文献
3.
4.
5.
Background
The study of functional subfamilies of protein domain families and the identification of the residues which determine substrate specificity is an important question in the analysis of protein domains. One way to address this question is the use of clustering methods for protein sequence data and approaches to predict functional residues based on such clusterings. The locations of putative functional residues in known protein structures provide insights into how different substrate specificities are reflected on the protein structure level. 相似文献6.
Susanna KP Lau Siddharth Sridhar Chi-Chun Ho Wang-Ngai Chow Kim-Chung Lee Ching-Wan Lam Kwok-Yung Yuen Patrick CY Woo 《Experimental biology and medicine (Maywood, N.J.)》2015,240(6):742-751
Melioidosis is an emerging, potentially fatal disease caused by Burkholderia pseudomallei, which requires prolonged antibiotic treatment to prevent disease relapse. However, difficulties in laboratory diagnosis of melioidosis may delay treatment and affect disease outcomes. Isolation of B. pseudomallei from clinical specimens has been improved with the use of selective media. However, even with positive cultures, identification of B. pseudomallei can be difficult in clinical microbiology laboratories, especially in non-endemic areas where clinical suspicion is low. Commercial identification systems may fail to distinguish between B. pseudomallei and closely related species such as Burkholderia thailandensis. Genotypic identification of suspected isolates can be achieved by sequencing of gene targets such as groEL which offer higher discriminative power than 16S rRNA. Specific PCR-based identification of B. pseudomallei has also been developed using B. pseudomallei-specific gene targets such as Type III secretion system and Tat-domain protein. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry, a revolutionary technique for pathogen identification, has been shown to be potentially useful for rapid identification of B. pseudomallei, although existing databases require optimization by adding reference spectra for B. pseudomallei. Despite these advances in bacterial identification, diagnostic problems encountered in culture-negative cases remain largely unresolved. Although various serological tests have been developed, they are generally unstandardized “in house” assays and have low sensitivities and specificities. Although specific PCR assays have been applied to direct clinical and environmental specimens, the sensitivities for diagnosis remain to be evaluated. Metabolomics is an uprising tool for studying infectious diseases and may offer a novel approach for exploring potential diagnostic biomarkers. The metabolomics profiles of B. pseudomallei culture supernatants can be potentially distinguished from those of related bacterial species including B. thailandensis. Further studies using bacterial cultures and direct patient samples are required to evaluate the potential of metabolomics for improving diagnosis of melioidosis. 相似文献
7.
1) Wind connectivity has been identified as a key factor driving many biological processes. 2) Existing software available for managing wind data are often overly complex for studying many ecological processes and cannot be incorporated into a broad framework. 3) Here we present rWind, an R language package to download and manage surface wind data from the Global Forecasting System and to compute wind connectivity between locations. 4) Data obtained with rWind can be used in a general framework for analysis of biological processes to develop hypotheses about the role of wind in driving ecological and evolutionary patterns. 相似文献
8.
Phylogenomic studies produce increasingly large phylogenetic forests of trees with patchy taxonomical sampling. Typically, prokaryotic data generate thousands of gene trees of all sizes that are difficult, if not impossible, to root. Their topologies do not match the genealogy of lineages, as they are influenced not only by duplication, losses, and vertical descent but also by lateral gene transfer (LGT) and recombination. Because this complexity in part reflects the diversity of evolutionary processes, the study of phylogenetic forests is thus a great opportunity to improve our understanding of prokaryotic evolution. Here, we show how the rich evolutionary content of such novel phylogenetic objects can be exploited through the development of new approaches designed specifically for extracting the multiple evolutionary signals present in the forest of life, that is, by slicing up trees into remarkable bits and pieces: clans, slices, and clips. We harvested a forest of 6,901 unrooted gene trees comprising up to 100 prokaryotic genomes (41 archaea and 59 bacteria) to search for evolutionary events that a species tree would not account for. We identified 1) trees and partitions of trees that reflected the lifestyle of organisms rather than their taxonomy, 2) candidate lifestyle-specific genetic modules, used by distinct unrelated organisms to adapt to the same environment, 3) gene families, nonrandomly distributed in the functional space, that were frequently exchanged between archaea and bacteria, sometimes without major changes in their sequences. Finally, 4) we reconstructed polarized networks of genetic partnerships between archaea and bacteria to describe some of the rules affecting LGT between these two Domains. 相似文献
9.
Erin M. Schliep Nina K. Lany Phoebe L. Zarnetske Robert N. Schaeffer Colin M. Orians David A. Orwig Evan L. Preisser 《Global Ecology and Biogeography》2018,27(1):142-155
Aim
Species distribution models are important tools used to study the distribution and abundance of organisms relative to abiotic variables. Dynamic local interactions among species in a community can affect abundance. The abundance of a single species may not be at equilibrium with the environment for spreading invasive species and species that are range shifting because of climate change. Innovation : We develop methods for incorporating temporal processes into a spatial joint species distribution model for presence/absence and ordinal abundance data. We model non‐equilibrium conditions via a temporal random effect and temporal dynamics with a vector‐autoregressive process allowing for intra‐ and interspecific dependence between co‐occurring species. The autoregressive term captures how the abundance of each species can enhance or inhibit its own subsequent abundance or the subsequent abundance of other species in the community and is well suited for a ‘community modules’ approach of strongly interacting species within a food web. R code is provided for fitting multispecies models within a Bayesian framework for ordinal data with any number of locations, time points, covariates and ordinal categories.Main conclusions
We model ordinal abundance data of two invasive insects (hemlock woolly adelgid and elongate hemlock scale) that share a host tree and were undergoing northwards range expansion in the eastern U.S.A. during the period 1997–2011. Accounting for range expansion and high inter‐annual variability in abundance led to improved estimation of the species–environment relationships. We would have erroneously concluded that winter temperatures did not affect scale abundance had we not accounted for the range expansion of scale. The autoregressive component revealed weak evidence for commensalism, in which adelgid may have predisposed hemlock stands for subsequent infestation by scale. Residual spatial dependence indicated that an unmeasured variable additionally affected scale abundance. Our robust modelling approach could provide similar insights for other community modules of co‐occurring species. 相似文献10.
Marcilio CP de Souto Ivan G Costa Daniel SA de Araujo Teresa B Ludermir Alexander Schliep 《BMC bioinformatics》2008,9(1):497