首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   62篇
  免费   1篇
  63篇
  2023年   1篇
  2014年   3篇
  2013年   2篇
  2012年   3篇
  2009年   2篇
  2008年   1篇
  2007年   2篇
  2006年   1篇
  2005年   3篇
  2004年   4篇
  2003年   1篇
  2002年   2篇
  2001年   2篇
  2000年   1篇
  1999年   1篇
  1998年   1篇
  1997年   2篇
  1996年   3篇
  1995年   1篇
  1994年   2篇
  1993年   1篇
  1992年   1篇
  1991年   2篇
  1989年   1篇
  1988年   2篇
  1987年   1篇
  1986年   2篇
  1985年   2篇
  1984年   3篇
  1982年   1篇
  1980年   2篇
  1979年   1篇
  1974年   2篇
  1943年   1篇
  1940年   2篇
  1932年   1篇
排序方式: 共有63条查询结果,搜索用时 0 毫秒
1.
In this study ventilation was evaluated in 12-mo-old male and female rats who had received large doses of aspartic acid neonatally. Rats of both sexes treated with aspartic acid were obese, stunted, and exhibited hypogonadism. Although metabolic rates of the aspartic acid-treated rats were not different compared with sex-matched controls, ventilatory patterns were different. Aspartic acid-treated females breathed with a smaller tidal volume (VT), higher frequency (f), and similar minute ventilation (VE) compared with control females. This pattern is commonly observed in many patients who are obese. The aspartic acid-treated females responded to hypercapnic and hypoxic challenges by increasing f more than VT. Tissue pocket gases (PCO2 and PO2) of aspartic acid-treated females were normal. In contrast, aspartic acid-treated males hypoventilated compared with control males. Tissue pocket gas values suggested that aspartic acid-treated males were hypoxemic and hypercapnic. Moreover, the response of aspartic acid-treated males to hypercapnia was parallel to but was less than that of control male rats. The ventilatory response of aspartic acid-treated male rats to hypoxia was blunted. This study has shown that neonatal administration of aspartic acid causes a decreased ventilation and blunted response to hypoxia in adult male but not female rats.  相似文献   
2.
Ventilation and metabolism among rat strains   总被引:3,自引:0,他引:3  
Strohl, Kingman P., Agnes J. Thomas, Pamela St. Jean, EvelynH. Schlenker, Richard J. Koletsky, and Nicholas J. Schork. Ventilation and metabolism among rat strains. J. Appl. Physiol. 82(1): 317-323, 1997.We examinedventilation and metabolism in four rat strains with variation in traitsfor body weight and/or blood pressure regulation.Sprague-Dawley [SD; 8 males (M), 8 females (F)], BrownNorway (BN; 10 M, 11 F), and Zucker (Z; 11 M, 12 F) rats were comparedwith Koletsky (K; 11 M, 11 F) rats. With the use of noninvasiveplethysmography, frequency, tidal volume, minute ventilation(E),O2 consumption, andCO2 production were derived atrest during normoxia (room air) and during the 5th minute of exposureto each of the following: hyperoxia (100% O2), hypoxia (10%O2-balanceN2), and hypercapnia (7%CO2-balance O2). Statistical methods probedfor strain and sex effects, with covariant analysis by body weight,length, and body mass. During resting breathing, strain effects werefound with respect to both frequency (BN, Z > K, SD) and tidal volume(SD > BN, Z) but not to E. Sexinfluenced frequency (F > M) alone. Z rats had higher values forO2 consumption,CO2 production, and respiratoryquotient than the other three strains, with no independent effect bysex. During hyperoxia, frequency was greater in BN and Z than in SD orK rats; SD rats had a larger tidal volume than BN or Z rats; Z rats hada greater E than K rats; and M had alarger tidal volume than F. Strain differences persisted duringhypercapnia, with Z rats exhibiting the highest frequency andE values. During hypoxic exposure,strain effects were found to influenceE (SD > K, Z), frequency (BN > K), and tidal volume (SD > BN, K, Z). Body mass was only amodest predictor of E during normoxia, of both E and tidal volume withhypoxia, hypercapnia, or hyperoxia, and of frequency duringhypercapnia. We conclude that strain of rats, more than their body massor sex, has major and different influences on metabolism, the patternand level of ventilation during air breathing, and ventilation duringacute exposure to hypercapnia or hypoxia.

  相似文献   
3.
4.
The metabolic rates of laboratory mice were compared in three conditions: isolated mice, mice paired together over six days (stable groups), and mice paired with strange partners daily (unstable groups). Stable pairs had 15% lower metabolic rates than either isolated or unstable pairs. In other experiments when two mice were placed in separate metabolic chambers and connected together via an air flow, the metabolic rate of the recipient in the series was 35% lower than the donor. The data suggest that a ‘factor’ produced by the donor mouse was passed via the air supply into the recipient's chamber.  相似文献   
5.
The present paper demonstrates the ease of use of method I by Preece and Baine ([1978] Ann Hum Biol 5:1-24) in generating smoothed growth curves for both height and weight. Using the National Center for Health Statistics (NCHS) growth curve data, smoothed curves were developed and compared to those produced using the least-squares-cubic-spline method. Based on the lower sum of squares and better fit of shape as indicated by residual examination, it was concluded that the method I curve fitting procedure by Preece and Baine ([1978] Ann Hum Biol 5:1-24) fit centile growth curves for height and weight in 2-18-year-old male and female children as well as, if not better than, the least-squares-cubic-spline method used in developing the 1979 NCHS growth curves. Further, as this paper demonstrates, smoothed curves can be generated on a desktop computer using readily available software (the SOLVER function within Microsoft EXCEL).  相似文献   
6.
Koegl M  Hoppe T  Schlenker S  Ulrich HD  Mayer TU  Jentsch S 《Cell》1999,96(5):635-644
Proteins modified by multiubiquitin chains are the preferred substrates of the proteasome. Ubiquitination involves a ubiquitin-activating enzyme, E1, a ubiquitin-conjugating enzyme, E2, and often a substrate-specific ubiquitin-protein ligase, E3. Here we show that efficient multiubiquitination needed for proteasomal targeting of a model substrate requires an additional conjugation factor, named E4. This protein, previously known as UFD2 in yeast, binds to the ubiquitin moieties of preformed conjugates and catalyzes ubiquitin chain assembly in conjunction with E1, E2, and E3. Intriguingly, E4 defines a novel protein family that includes two human members and the regulatory protein NOSA from Dictyostelium required for fruiting body development. In yeast, E4 activity is linked to cell survival under stress conditions, indicating that eukaryotes utilize E4-dependent proteolysis pathways for multiple cellular functions.  相似文献   
7.
We hypothesized that, in male rats, 10% fructose in drinking water would depress ventilatory responsiveness to acute hypoxia (10% O2 in N2) and hypercapnia (5% CO2 in O2) that would be depressed further by exposure to intermittent hypoxia. Minute ventilation (Ve) in air and in response to acute hypoxia and hypercapnia was evaluated in 10 rats before fructose feeding (FF), during 6 wk of FF, and after FF was removed for 2 wk. During FF, five rats were exposed to intermittent air and five to intermittent hypoxia for 13 days. Six rats given tap water acted as control and were exposed to intermittent air and subsequently intermittent hypoxia. In FF rats, plasma insulin levels increased threefold in the rats exposed to intermittent hypoxia and during washout returned to levels observed in rats exposed to intermittent air. During FF, ventilatory responsiveness to acute hypoxia was depressed because of decreased tidal volume (Vt) responsiveness. During washout, Ve decreased as a result of decreased Vt and frequency of breathing, and the ventilatory responsiveness to hypoxia in intermittent hypoxia rats did not recover. In all rats, the ventilatory responses to hypercapnia were decreased during FF and recovered after washout because of an increased Vt responsiveness. In the control group, hypoxic responsiveness was not depressed after intermittent hypoxia and was augmented after washout. Thus FF attenuated the ventilatory responsiveness of conscious rats to hypoxia and hypercapnia. Intermittent hypoxia interacted with FF to increase insulin levels and depress ventilatory responses to acute hypoxia that remained depressed during washout.  相似文献   
8.
We examined the effects of thyroid hormones (THs) on left ventricular (LV) function and myocyte remodeling in rats with spontaneously hypertensive heart failure (SHHF). SHHF rats were treated with three different TH doses from 20-21 mo of age. In terminal experiments, LV function (as determined by echocardiography and catheterization) and isolated myocyte shape were examined in SHHF rat groups and age-matched Wistar-Furth control animals. Compared with Wistar-Furth rats, the ratio of alpha- to beta-myosin was reduced in untreated SHHF rats. The alpha-to-beta-myosin ratio increased in all TH groups, which suggests a reversal of the fetal gene program. Low-dose TH produced no changes in LV myocyte size or function, but high-dose TH produced signs of hyperthyroidism (e.g., increased heart weight, tachycardia). The chamber diameter-to-wall thickness ratio declined with increasing dose due to reduced chamber diameter and increased wall thickness. This resulted in a 38% reduction in LV systolic wall stress in the middle- and high-dose groups despite sustained hypertension. Isolated myocyte data indicated that chamber remodeling and reduced wall stress were due to a unique alteration in myocyte transverse shape (e.g., reduced major diameter and increased minor diameter). Based on our present understanding of ventricular remodeling and wall stress, we believe these changes are likely beneficial. Results suggest that TH may be an important regulator of myocyte transverse shape in heart disease.  相似文献   
9.
The eukaryotic signal recognition particle (SRP) and its receptor (SR) play a central role in co-translational targeting of secretory and membrane proteins to the endoplasmic reticulum. The SR is a heterodimeric complex assembled by the two GTPases SRalpha and SRbeta, which is membrane-anchored. Here we present the 2.45-A structure of mammalian SRbeta in its Mg2+ GTP-bound state in complex with the minimal binding domain of SRalpha termed SRX. SRbeta is a member of the Ras-GTPase superfamily closely related to Arf and Sar1, while SRX belongs to the SNARE-like superfamily with a fold also known as longin domain. SRX binds to the P loop and the switch regions of SRbeta-GTP. The binding mode and structural similarity with other GTPase-effector complexes suggests a co-GAP (GTPase-activating protein) function for SRX. Comparison with the homologous yeast structure and other longin domains reveals a conserved adjustable hydrophobic surface within SRX which is of central importance for the SRbeta-GTP:SRX interface. A helix swap in SRX results in the formation of a dimer in the crystal structure. Based on structural conservation we present the SRbeta-GTP:SRX structure as a prototype for conserved interactions in a variety of GTPase regulated targeting events occurring at endomembranes.  相似文献   
10.
Aerial exposure and acute thermal stress have been shown to elicit profound physiological disruptions in obligate water-breathing teleosts. However, no study has investigated these responses in an elasmobranch. To address this, venous blood samples were collected and evaluated from little skates (Leucoraja erinacea) subjected to discrete aerial exposure durations (0, 15, and 50 min) coupled with differing abrupt thermal changes (gradient between seawater and air; winter: ΔT=-3 °C; summer: ΔT=+9 °C) in two distinct laboratory studies. In general, blood acid-base properties (e.g. decline in pH; elevation in PCO(2)) and select metabolites (elevated whole-blood lactate) and electrolytes (elevated plasma K(+)) were significantly disrupted by aerial exposure, and were most disturbed after skates were exposed to air for 50 min. However, the magnitude of the blood acid-base perturbations, metabolic contribution to the resulting blood acidosis, elevations to ionic and metabolic parameters, and delayed mortality were more extreme during the summer study, suggesting that acute thermal stress exacerbates the physiological impairments associated with aerial exposure in little skates. Conversely, a reduced thermal gradient (from seawater to air) may attenuate the magnitude of metabolic and ionic perturbations, resulting in a high physiological threshold for coping with extended aerial exposure.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号