首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   47篇
  免费   0篇
  2023年   1篇
  2022年   2篇
  2021年   2篇
  2020年   1篇
  2019年   1篇
  2018年   1篇
  2014年   2篇
  2013年   1篇
  2012年   1篇
  2009年   1篇
  2008年   1篇
  2007年   2篇
  2006年   1篇
  2004年   1篇
  2000年   3篇
  1999年   2篇
  1992年   4篇
  1991年   3篇
  1990年   1篇
  1989年   3篇
  1988年   2篇
  1987年   3篇
  1986年   3篇
  1984年   2篇
  1982年   3篇
排序方式: 共有47条查询结果,搜索用时 15 毫秒
1.
Many recent studies have established the eosinophil as an active proinflammatory participant in a variety of disease states, most notably in allergic and helminthic disorders. In order to understand the effector role of eosinophils, factors which promote a selective eosinophilic infiltrate must be delineated. Eosinophil adherence to vascular endothelium is the first step in the formation of such an infiltrate. However, studies thus far have failed to identify factors which selectively activate the adherence of eosinophils. We have therefore speculated that the selective enrichment of eosinophils may result from nonselective recruitment of several leukocyte types combined with the production of local factors that promote the survival of eosinophils and not of other cells. We report that endothelial cell-conditioned medium selectively prolongs eosinophil survival up to 6 days in culture in a dose- and time-dependent manner. Stimulation of human vascular endothelial cells with IL-1 caused an increase in the generation of eosinophil survival-promoting activity, whereas stimulation with platelet-activating factor did not. Supernatants from human vascular endothelial cells cultured for 48 h in the presence of the glucocorticoid, dexamethasone, were less active in promoting eosinophil survival than control supernatants. These results suggest that factors produced locally in the vascular microenvironment may selectively promote eosinophil survival and may be under the regulation of cytokines and glucocorticoids.  相似文献   
2.
Urbanization affects key aspects of wildlife ecology. Dispersal in urban wildlife species may be impacted by geographical barriers but also by a species’ inherent behavioural variability. There are no functional connectivity analyses using continuous individual‐based sampling across an urban‐rural continuum that would allow a thorough assessment of the relative importance of physical and behavioural dispersal barriers. We used 16 microsatellite loci to genotype 374 red foxes (Vulpes vulpes) from the city of Berlin and surrounding rural regions in Brandenburg in order to study genetic structure and dispersal behaviour of a mobile carnivore across the urban‐rural landscape. We assessed functional connectivity by applying an individual‐based landscape genetic optimization procedure. Three commonly used genetic distance measures yielded different model selection results, with only the results of an eigenvector‐based multivariate analysis reasonably explaining genetic differentiation patterns. Genetic clustering methods and landscape resistance modelling supported the presence of an urban population with reduced dispersal across the city border. Artificial structures (railways, motorways) served as main dispersal corridors within the cityscape, yet urban foxes avoided densely built‐up areas. We show that despite their ubiquitous presence in urban areas, their mobility and behavioural plasticity, foxes were affected in their dispersal by anthropogenic presence. Distinguishing between man‐made structures and sites of human activity, rather than between natural and artificial structures, is thus essential for better understanding urban fox dispersal. This differentiation may also help to understand dispersal of other urban wildlife and to predict how behaviour can shape population genetic structure beyond physical barriers.  相似文献   
3.
4.
5.
6.
Biodiversity and Conservation - In the European Union, all bat species are strictly protected and member states must ensure their conservation. However, if populations are genetically structured,...  相似文献   
7.
Activation of B cells in the airways is now believed to be of great importance in immunity to pathogens, and it participates in the pathogenesis of airway diseases. However, little is known about the mechanisms of local activation of B cells in airway mucosa. We investigated the expression of members of the B cell-activating TNF superfamily (B cell-activating factor of TNF family (BAFF) and a proliferation-inducing ligand (APRIL)) in resting and TLR ligand-treated BEAS-2B cells and primary human bronchial epithelial cells (PBEC). In unstimulated cells, expression of BAFF and APRIL was minimal. However, BAFF mRNA was significantly up-regulated by TLR3 ligand (dsRNA), but not by other TLR ligands, in both BEAS-2B cells (376-fold) and PBEC (224-fold). APRIL mRNA was up-regulated by dsRNA in PBEC (7-fold), but not in BEAS-2B cells. Membrane-bound BAFF protein was detectable after stimulation with dsRNA. Soluble BAFF protein was also induced by dsRNA (> 200 pg/ml). The biological activity of the epithelial cell-produced BAFF was verified using a B cell survival assay. BAFF was also strongly induced by IFN-beta, a cytokine induced by dsRNA. Induction of BAFF by dsRNA was dependent upon protein synthesis and IFN-alphabeta receptor-JAK-STAT signaling, as indicated by studies with cycloheximide, the JAK inhibitor I, and small interfering RNA against STAT1 and IFN-alphabeta receptor 2. These results suggest that BAFF is induced by dsRNA in airway epithelial cells and that the response results via an autocrine pathway involving IFN-beta. The production of BAFF and APRIL by epithelial cells may contribute to local accumulation, activation, class switch recombination, and Ig synthesis by B cells in the airways.  相似文献   
8.
Despite the fact that glucocorticoids and long acting beta agonists are effective treatments for asthma, their effects on human mast cells (MC) appear to be modest. Although MC are one of the major effector cells in the underlying inflammatory reactions associated with asthma, their regulation by these drugs is not yet fully understood and, in some cases, controversial. Using a human immortalized MC line (LAD2), we studied the effects of fluticasone propionate (FP) and salmeterol (SM), on the release of early and late phase mediators. LAD2 cells were pretreated with FP (100 nM), SM (1 µM), alone and in combination, at various incubation times and subsequently stimulated with agonists substance P, C3a and IgE/anti-IgE. Degranulation was measured by the release of β-hexosaminidase. Cytokine and chemokine expression were measured using quantitative PCR, ELISA and cytometric bead array (CBA) assays. The combination of FP and SM synergistically inhibited degranulation of MC stimulated with substance P (33% inhibition compared to control, n = 3, P<.05). Degranulation was inhibited by FP alone, but not SM, when MC were stimulated with C3a (48% inhibition, n = 3, P<.05). As previously reported, FP and SM did not inhibit degranulation when MC were stimulated with IgE/anti-IgE. FP and SM in combination inhibited substance P-induced release of tumor necrosis factor (TNF), CCL2, and CXCL8 (98%, 99% and 92% inhibition, respectively, n = 4, P<.05). Fluticasone and salmeterol synergistically inhibited mediator production by human MC stimulated with the neuropeptide substance P. This synergistic effect on mast cell signaling may be relevant to the therapeutic benefit of combination therapy in asthma.  相似文献   
9.
10.
Immunologic activation of purified human lung mast cells (HLMC) and basophils with anti-IgE induced histamine release but failed to elicit any changes in cAMP levels. In contrast, histamine release and monophasic rises in cAMP were observed in both rat peritoneal mast cells (RPMC) challenged with concanavalin A (73% enhancement over basal cAMP 20 sec after activation) and a cultured mouse bone marrow-derived mast cell (PT18 cell line) passively sensitized with dinitrophenol-specific IgE and stimulated with antigen (39% increase above basal at 15 sec). The adenylate cyclase activators isoprenaline, prostaglandin E2 (PGE2), and forskolin and the phosphodiesterase inhibitor isobutylmethylxanthine (IBMX) all induced elevations in cAMP levels in both basophils and HLMC. In basophils, PGE2 and isoprenaline produced approximately twofold increases in cAMP that were maximal at 1 min and decayed thereafter. Forskolin and IBMX produced threefold increases in cAMP that peaked 10 min after activation and persisted for up to 20 min. In HLMC, isoprenaline provoked a rapid monophasic fourfold increase in cAMP that was maximal at 1 min after addition. Levels of cAMP subsequently declined but remained significantly elevated over resting levels for up to 30 min. PGE2, forskolin, and IBMX all produced approximately threefold rises in HLMC cAMP that peaked around 5 min and persisted for 30 min. In both the basophil and HLMC, agonist-induced elevations in cAMP correlated well with the inhibition of mediator release. In basophils, the order IBMX greater than forskolin greater than PGE2 greater than isoprenaline held for both the inhibition of histamine and leukotriene C4 release and the augmentation of cAMP levels. In HLMC, individual agonists elevated cAMP levels to similar degrees and inhibited the release of histamine, leukotriene C4, and PGD2 to comparable extents, although the release of the arachidonate metabolites was generally more sensitive to the inhibitory actions of these agonists. These results suggest that elevations in cAMP, in both the basophil and HLMC, are associated with the inhibition of mediator release but not the initiation of the secretory process.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号