首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   143篇
  免费   28篇
  2020年   1篇
  2018年   2篇
  2017年   2篇
  2016年   1篇
  2015年   8篇
  2014年   5篇
  2013年   2篇
  2012年   10篇
  2011年   4篇
  2010年   9篇
  2009年   4篇
  2008年   11篇
  2007年   3篇
  2006年   7篇
  2005年   6篇
  2004年   6篇
  2003年   6篇
  2002年   5篇
  2001年   7篇
  2000年   8篇
  1999年   2篇
  1998年   4篇
  1997年   2篇
  1996年   5篇
  1995年   2篇
  1992年   4篇
  1991年   1篇
  1990年   1篇
  1989年   3篇
  1988年   4篇
  1987年   4篇
  1986年   2篇
  1985年   6篇
  1984年   2篇
  1983年   1篇
  1982年   3篇
  1981年   3篇
  1979年   2篇
  1978年   4篇
  1977年   3篇
  1973年   1篇
  1971年   2篇
  1969年   1篇
  1968年   1篇
  1966年   1篇
排序方式: 共有171条查询结果,搜索用时 15 毫秒
1.
Treatment of freshly isolated, bovine neurofilaments with Escherichia coli alkaline phosphatase removes over 90% of the phosphate groups from serine residues of the Mr 200,000 and 150,000 polypeptide components (NF200 and NF150). Dephosphorylated NF200 and NF150 remain associated with filaments, but migrate in sodium dodecyl sulfate gels with reduced apparent molecular weights. Unusual migration appears to be due to modification at regions of these polypeptides that are peripheral to the neurofilament backbone as defined by limited chymotryptic digestion. Over 90 monoclonal antibodies recognizing epitopes located within the peripheral domain of native NF200 all show reduced affinity for dephosphorylated NF200. A single monoclonal antibody binds within the filament-associated domain of NF200 and its recognition of NF200 is unaffected upon treatment of neurofilaments with phosphatase. Around 50% of our monoclonal antibodies that bind NF150 monospecifically and at epitopes within its peripheral domain have reduced affinities for NF150 from phosphatase-treated filaments, while the remaining 50% bind native and dephosphorylated NF150 equally well. The smallest neurofilament component (NF70) contains few phosphate groups, most of which remain after treatment of neurofilaments with phosphatase. The resulting form of NF70 migrates normally in gels and its recognition by antibodies is unchanged. We conclude that phosphorylation modifies the structure of the two larger neurofilament polypeptides along domains that are peripheral to the filamentous backbone and that these effects are more pronounced for NF200 than for NF150.  相似文献   
2.
The present study demonstrates the activation of calpain I and calpain II by micromolar levels of terbium and has utilized the enhancement in the fluorescence of protein-bound terbium to study and compare the calcium binding sites of the two enzymes. Calpain I and calpain II were isolated from bovine erythrocytes and brain, respectively. While the rates of activation of calpain I by terbium and calcium are comparable, the rate of activation of calpain II was much greater in the presence of terbium than in the presence of calcium. Binding of terbium ions to calpains was monitored by the enhanced terbium fluorescence and by the changes in the intrinsic protein fluorescence of calpains. Stoichiometric titrations indicated that calpain I and calpain II bound four and six molar equivalents of terbium ion, respectively. During the titration, the intrinsic protein fluorescence of calpain II was successively quenched whereas that of calpain I showed an abrupt drop just prior to the saturation. The association constants (Ka) increased from 10(5) to 10(7) M-1 for calpain I and from 10(4) to 10(6) M-1 for calpain II with addition of increasing molar equivalents of terbium. Titration of enzymatic activities with calcium showed that the activation of calpain I required fewer molar equivalents of metal ions than were necessary for the activation of calpain II, in agreement with stoichiometric titration with terbium.  相似文献   
3.
The state of phosphorylation in neurofilament (NF) proteins is studied by the 31P NMR technique. The 31P NMR spectrum of intact NF proteins at pH 7.0 is comprised of a major resonance at 4.18 ppm and a minor resonance at 3.53 ppm. The chemical shifts of the major and minor resonances are strongly dependent on pH and have pKa values for phosphoserine of 5.85 and for phosphothreonine of 6.00, respectively. 31P NMR spectra of isolated NF polypeptides show nonequivalent phosphoserine clusters in NF150 and in NF200. Their chemical shifts are very similar in both polypeptides, but the intensities of homologous resonances are different. NF68 has no detectable 31P resonance signal. Phosphate-specific monoclonal antibodies to NF200 can distinguish phosphates of various clusters. Microtubule proteins can also produce specific alteration of the 31P resonances of NF200. NF proteins digested by calcium-activated neutral protease (CANP) show relatively little change in 31P resonances.  相似文献   
4.
The degradation of neurofilament (NF) proteins was examined by immunoblot methods to identify, characterize, and monitor the appearance of immunoreactive breakdown products during the loss of NF triplet proteins. Individual NF proteins and their breakdown products were identified using polyclonal and monoclonal antibodies to NF proteins. NF degradation was compared during calcium-activated proteolysis of isolated rat NF, during an experimental influx of calcium into excised rat spinal nerve roots, and during NF breakdown in transected rat peripheral nerve. These different experimental conditions produced similar patterns of NF fragmentation, including the transient appearance of NF immunobands between Mr 150,000-200,000 and 110,000-120,000 as well as the appearance and accumulation of NF immunobands between Mr 45,000 and 65,000. Most immunoreactive NF fragments remained Triton-insoluble. Low levels of the same immunoreactive fragments were present in control neural tissues, suggesting that calcium-activated proteolysis may be operative in the turnover and/or processing of NF proteins in vivo. Very similar patterns of NF degradation during experimental calcium influxes into different CNS and PNS tissues are indicative of the widespread distribution of calcium-activated NF protease in neural tissues.  相似文献   
5.
Codon usage in the vertebrate hemoglobins and its implications   总被引:2,自引:0,他引:2  
A study of codon usage in vertebrate hemoglobins revealed an evolutionary trend toward elevated numbers of CpG codon boundary pairs in mammalian hemoglobin alpha genes. Selection for CpG codon boundaries countering the generally observed CpG suppression is strongly suggested by these data. These observations parallel recently published experimental results that indicate that constitutive expression of the human alpha-globin gene appears to be determined by regulatory information encoded within the structural gene. The possibility is raised that, in the absence of selection, CpG decay can be used to date the evolutionary origin of a mammalian alpha pseudogene from its active alpha gene.   相似文献   
6.
The mole (Talpa europaea; Insectivora) and the mole rat (Spalax ehrenbergi; Rodentia) both have degenerated eyes as a convergent adaptation to subterranean life. The rudimentary eye lenses of these blind mammals no longer function in a visual process. The crystallin genes, which display a lens-specific expression pattern, were studied in these blind mammals and in related species with normal eyes by hybridizing their genomic DNAs with probes obtained from cDNA clones for alpha A-, alpha B-, and beta Bp-crystallins from calf and gamma 3- crystallin from the rat. For all crystallin genes examined, the hybridization signals of mole and mole rat genomic DNA were comparable, respectively, with those of shrew and of rat and mouse, normal-vision representatives of the orders Insectivora and Rodentia. The expression of the crystallins at the protein level was tested by using antiserum specific for alpha-crystallin in immunofluorescence reactions on lens sections of mole and mole rat eyes and by using antisera against the beta- and gamma-crystallins on sections of the mole eye. All antisera gave positive fluorescence reactions exclusively with lens tissue of these blind mammals, indicating that the crystallins are still normally expressed despite the fact that these lenses have had no function in a visual process in these mammals for at least many million years. These findings apparently imply that some unknown selective advantage has conserved the crystallin genes and their expression after the loss of normal function of the lenses.   相似文献   
7.
S100b is a calcium-binding protein that will bind to many calmodulin target molecules in a Ca2+-dependent manner. In order to study the Ca2+-dependent binding properties of S100b, its interaction with a calmodulin antagonist, trifluoperazine (TFP), was investigated using [19F]- and [1H]-NMR and UV-difference spectroscopy. It was estimated from [19F]-NMR that in the absence of Ca2+, thek 1/2 value of TFP was 130 µM, while itsk 1/2 value decreased to 28 µM in the presence of Ca2+. The addition of KCl was not antagonistic to the Ca2+-dependent interaction of TFP to S100b. The chemical exchange rate of TFP with Ca2+-bound S100b was estimated to be 9×102 sec?1. By comparison with TFP-calmodulin exchange rates, it is suggested that the TFP-binding site on S100b is structurally different from its binding sites on calmodulin. Proton NMR resonance broadening in the range 6.8–7.2 ppm, corresponding to phenylalanine nuclei of S100b, indicates that these residues may be involved in TFP binding. Addition of Ca2+ to a 1:1 mixture of S100b and TFP resulted in a red-shifted UV-difference spectrum, while no significant difference spectrum was detected when Mg2+ was added to a S100b-TFP solution. Thus, we suggest that Ca2+ induces the exposure of a hydrophobic domain on S100b containing one or more phenylalanine residues that will bind TFP but that this domain is different from the hydrophobic domain on calmodulin.  相似文献   
8.
The annexins are a family of phospholipid- and Ca2+-binding proteins that are structurally related. Two members of this family, human endonexin II and chicken anchorin CII, may arise from the same gene by alternative splicing of two structurally unrelated segments.  相似文献   
9.
Inhibition of protein kinase C by annexin V.   总被引:11,自引:0,他引:11  
Annexin V is a protein of unknown biological function that undergoes Ca(2+)-dependent binding to phospholipids located on the cytosolic face of the plasma membrane. Preliminary results presented herein suggest that a biological function of annexin V is the inhibition of protein kinase C (PKC). In vitro assays showed that annexin V was a specific high-affinity inhibitor of PKC-mediated phosphorylation of annexin I and myosin light chain kinase substrates, with half-maximal inhibition occurring at approximately 0.4 microM. Annexin V did not inhibit epidermal growth factor receptor/kinase phosphorylation of annexin I or cAMP-dependent protein kinase phosphorylation of the Kemptide peptide substrate. Since annexin V purified from both human placenta and recombinant bacteria inhibited protein kinase C activity, it is not likely that the inhibitor activity was associated with a minor contaminant of the preparations. The following results indicated that the mechanism of inhibition did not involve annexin V sequestration of phospholipid that was required for protein kinase C activation: similar inhibition curves were observed as phospholipid concentration was varied from 0 to 800 micrograms/mL; the extent of inhibition was not significantly affected by the order of addition of phospholipid, substrate, or PKC, and the core domain of annexin I was not a high-affinity inhibitor of PKC even though it had similar Ca2+ and phospholipid binding properties as annexin V. These data indirectly indicate that inhibition occurred by direct interaction between annexin V and PKC. Since the concentration of annexin V in many cell types exceeds the amounts required to achieve PKC inhibition in vitro, it is possible that annexin V inhibits PKC in a biologically significant manner in intact cells.  相似文献   
10.
In Drosophila pseudoobscura, the amylase (Amy) multigene family is contained within a series of inversions, or gene arrangements, on the third chromosome. The Standard (ST), Santa Cruz (SC), and Tree Line (TL) inversions are central to the phylogeny of arrangements, and have clusters of other arrangements derived from them. The gene arrangements belonging to each of these three clusters have a characteristic number of Amy genes, ranging from three in ST to two in SC to one in TL. This distribution pattern can reflect a history of either duplications or deletions, although the data available in the past did not permit a decision between these alternatives. We provide unambiguous evidence that three Amy genes were present before the divergence of the ST, SC, and TL arrangements. Thus, the current status of the Amy multigene family is the result of deletions in the TL and SC arrangements, which created three new pseudogenes: TL Amy2-psi, TL Amy3-psi, and SC Amy3- psi. Analysis of pseudogene sequences revealed that, in the SC and ST arrangements, pseudogene evolution has been retarded, most likely due to the homogenization effect of gene conversion. Finally, by determining the original copy number, we have reconstructed the evolutionary history of the Amy multigene family and linked it with the evolution of the central gene arrangements.   相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号