首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   51篇
  免费   3篇
  2021年   1篇
  2019年   1篇
  2017年   1篇
  2015年   4篇
  2014年   6篇
  2013年   4篇
  2012年   3篇
  2011年   2篇
  2010年   2篇
  2009年   3篇
  2008年   1篇
  2006年   1篇
  2005年   3篇
  2004年   1篇
  2003年   2篇
  2001年   1篇
  2000年   2篇
  1998年   1篇
  1997年   1篇
  1994年   2篇
  1993年   2篇
  1992年   2篇
  1991年   1篇
  1990年   1篇
  1984年   2篇
  1982年   2篇
  1972年   1篇
  1970年   1篇
排序方式: 共有54条查询结果,搜索用时 140 毫秒
1.
An affinity column consisting of the specific peptide inhibitor of papain, Gly-Gly (O-benzyl)Tyr-Arg, attached to Sepharose was found to bind the active thiol proteinase papaya peptidase A specifically, but only at an ionic strength significantly higher than the one at which papain is bound. When a mixture of active papaya peptidase A and its irreversibly oxidized contaminant was applied to the column, the active enzyme was bound whereas the inactive material was not. The bound enzyme was released by deionized water and found to contain 1 mol of SH group/mol of protein. The different conditions required for the binding of the two enzymes to the immobilized peptide was shown to reflect different ionic-strength-dependences of the affinity of the two enzymes for the peptide in solution. Whereas the affinity of papain for the inhibitor appears to be insensitive to ionic strength over the range studied, that of papaya peptidase A is ionic-strength-dependent and always lower than that of papain. A rate assay is devised for papaya peptidase A with N-benzyloxycarbonylglycine p-nitrophenyl ester as the substrate at pH 5.5. After calibration against an active-site titration the assay yields the thiol-group concentration without interference from inactive contaminants. For the papaya peptidase A-catalysed hydrolysis of N-benzyloxycarbonylglycine p-nitrophenyl ester at pH 5.5 kcat. was found to be 16.7s-1, which is about 3 times the value found for the same reaction catalysed by papain.  相似文献   
2.
3.
Different types of phase coupling between and within EEG signals are theoretically explained and coupling-related analysis strategies are reported. Effects of synchronization have been distinguished from effects signal transfer (propagation), where both are designated by a phase coupling. Six examples of phase coupling analysis are presented. The EEG data are derived from our previous investigations and analysis results are complemented by modelling and simulation studies.  相似文献   
4.
5.
Osteopontin (OPN) is a highly modified integrin-binding protein present in most tissues and body fluids where it has been implicated in numerous biological processes. A significant regulation of OPN function is mediated through phosphorylation and proteolytic processing. Proteolytic cleavage by thrombin and matrix metalloproteinases close to the integrin-binding Arg-Gly-Asp sequence modulates the function of OPN and its integrin binding properties. In this study, seven N-terminal OPN fragments originating from proteolytic cleavage have been characterized from human milk. Identification of the cleavage sites revealed that all fragments contained the Arg–Gly–Asp145 sequence and were generated by cleavage of the Leu151–Arg152, Arg152–Ser153, Ser153–Lys154, Lys154–Ser155, Ser155–Lys156, Lys156–Lys157, or Phe158–Arg159 peptide bonds. Six cleavages cannot be ascribed to thrombin or matrix metalloproteinase activity, whereas the cleavage at Arg152–Ser153 matches thrombin specificity for OPN. The principal protease in milk, plasmin, hydrolyzed the same peptide bond as thrombin, but its main cleavage site was identified to be Lys154–Ser155. Another endogenous milk protease, cathepsin D, cleaved the Leu151–Arg152 bond. OPN fragments corresponding to plasmin activity were also identified in urine showing that plasmin cleavage of OPN is not restricted to milk. Plasmin, but not cathepsin D, cleavage of OPN increased cell adhesion mediated by the αVβ3- or α5β1-integrins. Similar cellular adhesion was mediated by plasmin and thrombin-cleaved OPN showing that plasmin can be a potent regulator of OPN activity. These data show that OPN is highly susceptible to cleavage near its integrin-binding motifs, and the protein is a novel substrate for plasmin and cathepsin D.  相似文献   
6.
Recent research on mental representation of complex action has revealed distinct differences in the structure of representational frameworks between experts and novices. More recently, research on the development of mental representation structure has elicited functional changes in novices'' representations as a result of practice. However, research investigating if and how mental practice adds to this adaptation process is lacking. In the present study, we examined the influence of mental practice (i.e., motor imagery rehearsal) on both putting performance and the development of one''s representation of the golf putt during early skill acquisition. Novice golfers (N = 52) practiced the task of golf putting under one of four different practice conditions: mental, physical, mental-physical combined, and no practice. Participants were tested prior to and after a practice phase, as well as after a three day retention interval. Mental representation structures of the putt were measured, using the structural dimensional analysis of mental representation. This method provides psychometric data on the distances and groupings of basic action concepts in long-term memory. Additionally, putting accuracy and putting consistency were measured using two-dimensional error scores of each putt. Findings revealed significant performance improvements over the course of practice together with functional adaptations in mental representation structure. Interestingly, after three days of practice, the mental representations of participants who incorporated mental practice into their practice regime displayed representation structures that were more similar to a functional structure than did participants who did not incorporate mental practice. The findings of the present study suggest that mental practice promotes the cognitive adaptation process during motor learning, leading to more elaborate representations than physical practice only.  相似文献   
7.
The present study is an extension of the investigations made by Grieszbach and Schack (1993) where the recursive estimators of the quantile were introduced. Attention is focused on statistical properties and on the controlling of these estimators in order to reduce their variance and to improve their capability of adaptation. Using methods of stochastic approximation, several control algorithms have been developed, where both the consistent and the adaptive estimation are considered. Due to the recursive computation formula the estimators are suitable for the analysis of large data sets and for sets whose elements are obtained sequentially. In this study, application examples from the analysis of EEG‐records are presented, where quantiles are used as threshold values.  相似文献   
8.
9.
Recent research has shown that neurophysiological activation during action planning depends on the orientation to initial or final action goals for precision grips. However, the neural signature for a distinct class of grasping, power grips, is still unknown. The aim of the present study was to differentiate between cerebral activity, by means of event-related potentials (ERPs), and its temporal organization during power grips executed with an emphasis on either the initial or final parts of movement sequences. In a grasp and transportation task, visual cues emphasized either the grip (the immediate goal) or the target location (the final goal). ERPs differed between immediate and final goal-cued conditions, suggesting different means of operation dependent on goal-relatedness. Differences in mean amplitude occurred earlier for power grips than for recently reported precision grips time-locked to grasping over parieto-occipital areas. Time-locked to final object placement, differences occurred within a similar time window for power and precision grips over frontal areas. These results suggest that a parieto-frontal network of activation is of crucial importance for grasp planning and execution. Our results indicate that power grip preparation and execution for goal-related actions are controlled by similar neural mechanisms as have been observed during precision grips, but with a distinct temporal pattern.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号