首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   191篇
  免费   11篇
  2021年   2篇
  2019年   3篇
  2016年   4篇
  2015年   7篇
  2014年   4篇
  2013年   6篇
  2012年   5篇
  2011年   4篇
  2009年   3篇
  2008年   4篇
  2007年   4篇
  2006年   6篇
  2005年   10篇
  2004年   10篇
  2003年   6篇
  2002年   11篇
  2001年   7篇
  2000年   3篇
  1999年   4篇
  1998年   2篇
  1996年   2篇
  1995年   3篇
  1993年   2篇
  1992年   6篇
  1991年   5篇
  1990年   3篇
  1989年   6篇
  1988年   6篇
  1986年   5篇
  1985年   5篇
  1984年   4篇
  1983年   3篇
  1981年   3篇
  1980年   2篇
  1977年   2篇
  1975年   4篇
  1974年   1篇
  1971年   4篇
  1970年   2篇
  1967年   1篇
  1954年   2篇
  1948年   2篇
  1947年   3篇
  1945年   1篇
  1942年   1篇
  1939年   1篇
  1937年   2篇
  1932年   1篇
  1931年   6篇
  1930年   2篇
排序方式: 共有202条查询结果,搜索用时 15 毫秒
1.
Fifteen restriction sites were mapped to the 28S ribosomal RNA gene of individuals representing 54 species of frogs, two species of salamanders, a caecilian, and a lungfish. Eight of these sites were present in all species examined, and two were found in all but one species. Alignment of these conserved restriction sites revealed, among anuran 28S rRNA genes, five regions of major length variation that correspond to four of 12 previously identified divergent domains of this gene. One of the divergent domains (DD8) consists of two regions of length variation separated by a short segment that is conserved at least throughout tetrapods. Most of the insertions, deletions, and restriction-site variations identified in the 28S gene will require sequence-level analysis for a detailed reconstruction of their history. However, an insertion in DD9 that is coextensive with frogs in the suborder Neobatrachia, a BstEII site that is limited to representatives of two leptodactylid subfamilies, and a deletion in DD10 that is found only in three ranoid genera are probably synapomorphies.   相似文献   
2.
The Neurospora crassa plasma membrane H+-ATPase is rapidly inactivated in the presence of diethyl pyrocarbonate (DEP). The reaction is pseudo-first-order showing time- and concentration-dependent inactivation with a second-order rate constant of 385-420 M-1.min-1 at pH 6.9 and 25 degrees C. The difference spectrum of the native and modified enzyme has a maximum near 240 nm, characteristic of N-carbethoxyhistidine. No change in the absorbance of the inhibited ATPase at 278 nm or in the number of modifiable sulfhydryl groups is observed, indicating that the inhibition is not due to tyrosine or cysteine modification, and the inhibition is irreversible, ruling out serine residues. Furthermore, pretreatment of the ATPase with pyridoxal phosphate/NaBH4 under the conditions of the DEP treatment does not inhibit the ATPase and does not alter the DEP inhibition kinetics, indicating that the inactivation by DEP is not due to amino group modification. The pH dependence of the inactivation reaction indicates that the essential residue has a pKa near 7.5, and the activity lost as a result of H+-ATPase modification by DEP is partially recovered after hydroxylamine treatment at 4 degrees C. Taken together, these results strongly indicate that the inactivation of the H+-ATPase by DEP involves histidine modification. Analyses of the inhibition kinetics and the stoichiometry of modification indicate that among eight histidines modified per enzyme molecule, only one is essential for H+-ATPase activity. Finally, ADP protects against inactivation by DEP, indicating that the essential residue modified may be located at or near the nucleotide binding site.  相似文献   
3.
Force development in smooth muscle, as in skeletal muscle, is believed to reflect recruitment of force-generating myosin cross-bridges. However, little is known about the events underlying cross-bridge recruitment as the muscle cell approaches peak isometric force and then enters a period of tension maintenance. In the present studies on single smooth muscle cells isolated from the toad (Bufo marinus) stomach muscularis, active muscle stiffness, calculated from the force response to small sinusoidal length changes (0.5% cell length, 250 Hz), was utilized to estimate the relative number of attached cross-bridges. By comparing stiffness during initial force development to stiffness during force redevelopment immediately after a quick release imposed at peak force, we propose that the instantaneous active stiffness of the cell reflects both a linearly elastic cross-bridge element having 1.5 times the compliance of the cross-bridge in frog skeletal muscle and a series elastic component having an exponential length-force relationship. At the onset of force development, the ratio of stiffness to force was 2.5 times greater than at peak isometric force. These data suggest that, upon activation, cross-bridges attach in at least two states (i.e., low-force-producing and high-force-producing) and redistribute to a steady state distribution at peak isometric force. The possibility that the cross-bridge cycling rate was modulated with time was also investigated by analyzing the time course of tension recovery to small, rapid step length changes (0.5% cell length in 2.5 ms) imposed during initial force development, at peak force, and after 15 s of tension maintenance. The rate of tension recovery slowed continuously throughout force development following activation and slowed further as force was maintained. Our results suggest that the kinetics of force production in smooth muscle may involve a redistribution of cross-bridge populations between two attached states and that the average cycling rate of these cross-bridges becomes slower with time during contraction.  相似文献   
4.
A hybrid gene was constructed containing a fusion between the DNA sequences encoding the secretory precursor of the yeast mating pheromone alpha-factor and a synthetic sequence encoding a biologically active 24-amino acid carboxyl-terminal portion of the human atrial natriuretic peptide (hANP) precursor. Transformation of Saccharomyces cerevisiae with the hybrid gene resulted in the yeast cells secreting biologically active hANP into the extracellular medium. The secreted hANP was purified and found to be accurately processed at the junction in the chimeric alpha-factor/hANP protein, producing the desired mature hANP amino terminus. The secreted product was also folded correctly with respect to the single disulfide bond. However, the carboxyl terminus of the secreted hANP material was heterogeneous such that the major form lacked the last two amino acids of the peptide while the minor form was the full length material. The observed processing at the carboxyl terminus of the secreted hANP may reflect a normal processing event involved in alpha-factor peptide maturation.  相似文献   
5.
Recent studies of mitochondrial DNA (mtDNA) variation in mammals and Drosophila have shown an excess of amino acid variation within species (replacement polymorphism) relative to the number of silent and replacement differences fixed between species. To examine further this pattern of nonneutral mtDNA evolution, we present sequence data for the ND3 and ND5 genes from 59 lines of Drosophila melanogaster and 29 lines of D. simulans. Of interest are the frequency spectra of silent and replacement polymorphisms, and potential variation among genes and taxa in the departures from neutral expectations. The Drosophila ND3 and ND5 data show no significant excess of replacement polymorphism using the McDonald-Kreitman test. These data are in contrast to significant departures from neutrality for the ND3 gene in mammals and other genes in Drosophila mtDNA (cytochrome b and ATPase 6). Pooled across genes, however, both Drosophila and human mtDNA show very significant excesses of amino acid polymorphism. Silent polymorphisms at ND5 show a significantly higher variance in frequency than replacement polymorphisms, and the latter show a significant skew toward low frequencies (Tajima's D = -1.954). These patterns are interpreted in light of the nearly neutral theory where mildly deleterious amino acid haplotypes are observed as ephemeral variants within species but do not contribute to divergence. The patterns of polymorphism and divergence at charge-altering amino acid sites are presented for the Drosophila ND5 gene to examine the evolution of functionally distinct mutations. Excess charge-altering polymorphism is observed at the carboxyl terminal and excess charge-altering divergence is detected at the amino terminal. While the mildly deleterious model fits as a net effect in the evolution of nonrecombining mitochondrial genomes, these data suggest that opposing evolutionary pressures may act on different regions of mitochondrial genes and genomes.   相似文献   
6.
It is generally recognized that a fraction of all bacterioplanktoncells enumerated using conventional epifluorescence techniquesis neither growing, dividing nor metabolically active, but thevariation in the proportion of active cells among aquatic systemsis not well understood. Here, we hypothesize that the proportionof metabolically active cells increases systematically alonggradients of enrichment, and to test this hypothesis the numberand proportion of metabolically active planktonic bacteria wereinvestigated during the summer in a set of 24 temperate lakes,which span a considerable range in productivity. The tetrazoliumsalt 5-cyano-2,3-ditolyl tetrazolium chloride (CTC) was usedas an indicator of cells with an active electron transport system.The total number of bacteria ranged from 1.88x106 to 7.70x106ml–1, whereas the number of active cells was more variableand ranged from 0.37x106 to 2.18x106 ml–1 in the studylakes. The proportion of metabolically active cells ranged from15 to 33%, and tended to increase with nutrient and chlorophyllconcentrations, but not with dissolved organic carbon (DOC).Data on the number of total and active bacteria culled fromthe literature for marine, estuarine and freshwater systemsshow that the trends we measured in lakes are valid for pelagicsystems in general. Over a broad range of aquatic systems, thetotal number of bacteria varied by three orders of magnitude,whereas the number of active bacteria varied by four ordersof magnitude as system productivity increased. The proportionof active cells increased from ultraoligotrophic openocean areas(<5%) to highly productive estuaries (>50%). Our resultssuggest that in most aquatic systems there is a pool of rapidlygrowmg cells, embedded in a usually larger matrix of inactivebacteria, and that the relative size of the active and inactivepools varies systematically among bacterial populations alonggradients of enrichment.  相似文献   
7.
Motile spermatozoa from the golden hamster have been arrested by rapid freezing and then fixed with glutaraldehyde at low temperature after substitution with ethylene glycol. As far as can be judged, the flagellar waveforms thus stabilized are similar to those seen in living sperm; in contrast, fixation in glutaraldehyde, without prior freezing, induces agonal changes in flagellar conformation. The characteristics waveform after freeze substitution contains three bends. Approx. half of these flagella are entirely planar. The rest are three dimensional, with the third bend displaced in a regular way from the plane containing the proximal two bends. From the geometry of these flagella, it is concluded that the plane of action of a given bending cycle undergoes a clockwise twist (from a forward viewpoint) as the cycle is succeeded by new bending cycles. This "twisted plane" undulation is quite different from helical movement. The twisting seems to occur abruptly, between cycles, as if each bending cycle has a preferred plane of action. The mechanism underlying the twisting is uncertain. However, on the basis of the angular displacements between the preferred planes, and the findings from electron microscopy, the following idea is presented as a working hypothesis: that, if the most proximal plane of bending is topographically determined by peripheral doublet 1, then successive distal planes of action are influenced predominantly by doublets 2, 3, etc., in clockwise sequence. The merits and weaknesses of this hypothesis are discussed.  相似文献   
8.
A variety of the biochemical properties of the electrogenic plasma membrane ATPase of Neurospora crassa are described. The enzyme catalyzes the hydrolysis of ATP, resulting in the formation of ADP and inorganic phosphate. Optimal activity is observed between pH 6 and 6.5. ATP hydrolysis approaches a maximum rate at an Mg-ATP concentration of 10–20 mm with a half-maximal velocity around 2 mm Mg-ATP. The enzyme requires a divalent cation for activity in the following order of preference at 10 mm: Mg2+, Co2+ > Mn2+ > Zn2+ > Fe2+, Ca2+, Cu2+. The enzyme is quite specific for ATP compared to the other nucleotides tested. Treatment of the plasma membranes with sodium deoxycholate inactivates the ATPase and the inactivation can be prevented by the addition of certain acidic phospholipids with the deoxycholate. Other classes of lipids cannot prevent the deoxycholate inhibition. The organic mercurials parachloromercuribenzoate and parachloromercuriphenylsulfonate are potent inhibitors of the ATPase, but N-ethylmaleimide at a similar concentration is not inhibitory. The organic mercurial inhibition is not reversed by mercaptoethanol. Under appropriate conditions, the inhibitory effect of p-chloromercuribenzoate is suppressed in the presence of ATP. Treatment of the plasma membranes with trypsin leads to a marked inhibition of the ATPase activity and this inhibition can be prevented by Mg-ATP. Neither the organic mercurial reactive site(s) nor the trypsin-sensitive site(s) are accessible from the outer surface of the plasma membranes. Some of the implications of the above findings are discussed.  相似文献   
9.
Reconstituted proteoliposomes containing Neurospora plasma membrane H+-ATPase molecules oriented predominantly with their cytoplasmic portion facing outward have been used to determine the location of the NH2 and COOH termini of the H+-ATPase relative to the lipid bilayer. Treatment of the proteoliposomes with trypsin in the presence of the H+-ATPase ligands Mg2+, ATP, and vanadate produces approximately 97-, 95-, and 88-kDa truncated forms of the H+-ATPase similar to those already known to result from cleavage at Lys24, Lys36, and Arg73 at the NH2-terminal end of the molecule. These results establish that the NH2-terminal end of the H+-ATPase polypeptide chain is located on the cytoplasmic side of the membrane. Treatment of the same proteoliposome preparation with trypsin in the absence of ligands releases approximately 50 water-soluble peptides from the proteoliposomes. Separation of the released peptides by high performance liquid chromatography and spectral analysis of the purified peptides identified only a few peptides with the properties expected of a COOH-terminal, tryptic undecapeptide with the sequence SLEDFVVSLQR, and NH2-terminal amino acid sequence analysis identified this peptide among the possible candidates. Quantitative considerations indicate that this peptide must have come from H+-ATPase molecules oriented with their cytoplasmic portion facing outward, and could not have originated from a minor population of H+-ATPase molecules of reverse orientation. These results directly establish that the COOH-terminal end of the H+-ATPase is also located on the cytoplasmic side of the membrane. These findings are important for elucidating the topography of the membrane-bound H+-ATPase and are possibly relevant to the topography of other aspartyl-phosphoryl-enzyme intermediate ATPases as well.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号