首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12篇
  免费   2篇
  2022年   1篇
  2020年   1篇
  2019年   2篇
  2016年   2篇
  2015年   2篇
  2013年   3篇
  2009年   1篇
  1992年   1篇
  1990年   1篇
排序方式: 共有14条查询结果,搜索用时 15 毫秒
1.
Periodontitis is a complex disorder that affects a large number of human beings from different ethnic groups. This condition has been associated with dysregulation of a number of genes, among them are long noncoding RNAs (lncRNAs). In the current study, we assessed the expression of four lncRNAs (BDNF-AS, MIAT, MIR137HG, and PNKY) as well as BDNF in the peripheral blood and gingival tissues obtained from patients with periodontitis and healthy subjects. The expression of BDNF was significantly lower in blood samples of male patients with periodontitis compared with male controls (posterior β of RE = −4.754, p = .048). However, there was no significant difference in the expression of BDNF in tissue samples from the cases and controls. The expression of BDNF-AS was significantly lower in the tissue samples of patients compared with control tissue samples (posterior β of RE = −2.151, p = .019). Such an expression difference was detected between male subgroups as well (posterior β of RE = −3.679, p = .009). However, expression of this lncRNA was not different in blood samples obtained from patients compared with healthy subjects. The expression of PNKY was significantly higher in tissue samples obtained from female patients compared with sex-matched controls (posterior β of RE = 6.23, p = .037). Blood levels of this lncRNA were not different between cases and controls. There was no significant difference either in the tissue expression or in blood expression of MIR137HG or MIAT between cases and controls. The current study indicates the putative role of BDNF, BDNF-AS, and PNKY in the pathophysiology of periodontitis and potentiates these genes as candidates for functional studies.  相似文献   
2.
Spatiotemporal cytoskeleton remodeling is pivotal for cell adhesion and migration. Here we investigated the function of Gas2-related protein on chromosome 22 (GAR22β), a poorly characterized protein that interacts with actin and microtubules. Primary and immortalized GAR22β/ Sertoli cells moved faster than wild-type cells. In addition, GAR22β/ cells showed a more prominent focal adhesion turnover. GAR22β overexpression or its reexpression in GAR22β/ cells reduced cell motility and focal adhesion turnover. GAR22β–actin interaction was stronger than GAR22β–microtubule interaction, resulting in GAR22β localization and dynamics that mirrored those of the actin cytoskeleton. Mechanistically, GAR22β interacted with the regulator of microtubule dynamics end-binding protein 1 (EB1) via a novel noncanonical amino acid sequence, and this GAR22β–EB1 interaction was required for the ability of GAR22β to modulate cell motility. We found that GAR22β is highly expressed in mouse testes, and its absence resulted in reduced spermatozoa generation, lower actin levels in testes, and impaired motility and ultrastructural disorganization of spermatozoa. Collectively our findings identify GAR22β as a novel regulator of cell adhesion and migration and provide a foundation for understanding the molecular basis of diverse cytoskeleton-dependent processes.  相似文献   
3.
4.
5.
6.
7.
Cyclophosphamide (CYC) and doxorubicin (DOX) are among the most effective and widely used anticancer chemotherapeutic drugs. Potential chemopreventive and chemotherapeutic functions have recently been attributed to flavonoids. We hypothesized that Quercetin (QR) would protect against the toxic effects of chemotherapeutic agents applied prior to pregnancy. Rats were treated with the chemotherapeutic drugs CYC (27 mg/kg) and DOX (1.8 mg/kg) applied in a single intraperitoneal dose once every 3 weeks for 10 weeks. QR was administered at a dose of 10 mg/kg/day by oral gavage. 48 h following the experimental chemotherapy exposure, female rats were transferred to cages containing male rat for mating. Fetal brain tissues were removed from fetuses extracted by cesarean section on the 20th day of gestation for evaluation of antioxidant parameters. A significant increase in superoxide dismutase and malondialdehyde activity was observed in CYC and DOX treatment groups relative to the control group (p < 0.05). Similarly, carnitine acylcarnitine translocase and Glutathione activity was significantly reduced in the CYC and DOX groups relative to the control group (p < 0.05). Our results indicate that the use of chemotherapeutic drugs before pregnancy can result in oxidative damage to fetal brain tissue. Therefore, women who have been exposed to chemotherapy and may become pregnant should be treated with antioxidant compounds such as QR to reduce the risk of damage to fetal brain tissues.  相似文献   
8.
The N-Methyl-d-Aspartate (NMDA) receptor is expressed abundantly in the brain and plays an important role in neuronal development, learning and memory, neurodegenerative diseases, and neurogenesis. In this study, we evaluated the effects of NMDA receptor blockade during the early neurodevelopmental period on exploratory locomotion, anxiety-like behaviors and cognitive functions of adolescent Wistar rats. NMDA receptor hypofunction was induced 7–10 days after birth using MK-801 in rats (0.25 mg/kg twice a day for 4 days via intraperitoneal injection). The open-field (OF), elevated plus maze (EPM) and passive avoidance (PA) tests were used to evaluate exploratory locomotion, anxiety-like behaviors and cognitive functions. In the OF test, MK-801 caused an increase in locomotion behavior (p < 0.01) and in the frequency of rearing (p < 0.05). In the EPM test, MK-801 treatment increased the time spent in the open arms, the number of open arm entries and the amount of head dipping (p < 0.01). MK-801 treatment caused no statistical difference compared to the control group in the PA test (p > 0.05). Chronic NMDA receptor blockade during the critical period of maturation for the glutamatergic brain system (postnatal days 7–10) produces locomotor hyperactivity and decreased anxiety levels, but has no significant main effect on cognitive function during adolescence.  相似文献   
9.
The Ste20/PAK family is involved in many cellular processes, including the regulation of actin-based cytoskeletal dynamics and the activation of MAPK signaling pathways. Despite its numerous roles, few of its substrates have been identified. To better characterize the roles of the yeast Ste20p kinase, we developed an in vitro biochemical genomics screen to identify its substrates. When applied to 539 purified yeast proteins, the screen reported 14 targets of Ste20p phosphorylation. We used the data resulting from our screen to build an in silico predictor to identify Ste20p substrates on a proteome-wide basis. Since kinase-substrate specificity is often mediated by additional binding events at sites distal to the phosphorylation site, the predictor uses the presence/absence of multiple sequence motifs to evaluate potential substrates. Statistical validation estimates a threefold improvement in substrate recovery over random predictions, despite the lack of a single dominant motif that can characterize Ste20p phosphorylation. The set of predicted substrates significantly overrepresents elements of the genetic and physical interaction networks surrounding Ste20p, suggesting that some of the predicted substrates are in vivo targets. We validated this combined experimental and computational approach for identifying kinase substrates by confirming the in vitro phosphorylation of polarisome components Bni1p and Bud6p, thus suggesting a mechanism by which Ste20p effects polarized growth.  相似文献   
10.
Improved efforts are necessary to define the functional product of cancer mutations currently being revealed through large‐scale sequencing efforts. Using genome‐scale pooled shRNA screening technology, we mapped negative genetic interactions across a set of isogenic cancer cell lines and confirmed hundreds of these interactions in orthogonal co‐culture competition assays to generate a high‐confidence genetic interaction network of differentially essential or differential essentiality (DiE) genes. The network uncovered examples of conserved genetic interactions, densely connected functional modules derived from comparative genomics with model systems data, functions for uncharacterized genes in the human genome and targetable vulnerabilities. Finally, we demonstrate a general applicability of DiE gene signatures in determining genetic dependencies of other non‐isogenic cancer cell lines. For example, the PTEN?/? DiE genes reveal a signature that can preferentially classify PTEN‐dependent genotypes across a series of non‐isogenic cell lines derived from the breast, pancreas and ovarian cancers. Our reference network suggests that many cancer vulnerabilities remain to be discovered through systematic derivation of a network of differentially essential genes in an isogenic cancer cell model.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号