首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   0篇
  2006年   1篇
  2005年   1篇
  2003年   2篇
  1998年   2篇
  1997年   1篇
  1992年   1篇
排序方式: 共有8条查询结果,搜索用时 15 毫秒
1
1.
The technique of differential pulse polarography is shown here to be applicable to the monitoring directly the biosorption of metal ions from solution by live bacteria from mixed metal solutions. Biosorption of Cd(II), Zn(II) and Ni(II) by P. cepacia was followed using data obtained at the potential which is characteristic of the metal ion in the absence and presence of cells. Hepes buffer (pH 7.4, 50 mM) was used as a supporting electrolyte in the polarographic chamber and metal ion peaks in the presence of cells of lower amplitude were obtained due to metal-binding by the cells. Well defined polarographic peaks were obtained in experiments involving mixtures of metal ions of Cd(II)-Zn(II), Cu(II)-Zn(II), Cu(II)-Cd(II) and Cd(II)-Ni(II). Biosorption of Cd(II), Zn(II) increased with solution pH. The method was also tested as a rapid technique for assessing removal of metal ions by live bacteria and the ability of the polarographic technique in measuring biosorption of metal ions from mixed metal solutions is demonstrated. Cu(II) was preferentially bound and removal of metals was in the order Cu(II) > Ni(II) > Zn(II), Cd(II) by intact cells of P. cepacia. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
2.
AIMS: To determine the microbiological, biochemical and sensory changes of mussels during storage under aerobic, vacuum packaging (VP) and modified atmosphere packaging (MAP) conditions at 4 degrees C, and to determine shelf-life of mussels under the same packaging conditions using the above assessment parameters. METHODS AND RESULTS: Aqua-cultured mussels (Mytilus galloprovincialis) were obtained from a local culture farm, packaged aerobically under VP and MAP (50%/50% CO2/N2: M1, 80%/20% CO2/N2: M2, 40%/30%/30% CO2/N2/O2: M3), and stored at 4 degrees C. Quality evaluation was carried out using microbiological, chemical and sensory analyses. Microbiological results revealed that the M2 and VP delayed microbial growth compared with that of air-packaged samples. The effect was more pronounced for total viable count (TVC), Pseudomonas spp., lactic acid bacteria (LAB) and H2S-producing bacteria. TVC was reduced by 0.9-1.0, Pseudomonas spp. by 0.7-0.8, LAB by 1.0-2.2, H2S-producing bacteria by 0.7-1.2. Enterobacteriaceae were not significantly affected by MAP conditions. Of the chemical indices determined, the total volatile basic nitrogen and trimethylamine nitrogen values remained lower than the proposed acceptability limits of 35 mg N 100 g(-1) and 12 mg N 100 g(-1), respectively, after 15 days of storage. Both the VP and air-packaged mussel samples exceeded these limits. The thiobarbituric acid value of all MAP and VP mussels remained lower than the proposed acceptability limit of 1 mg malondialdehyde kg(-1). The air-packaged samples exceeded this limit. All samples retained desirable sensory characteristics during the first 8 days of storage. CONCLUSIONS: Based on odour and taste evaluation, the M1 and M3 samples remained acceptable until ca day 11-12, the M2 samples remained acceptable until ca day 14-15 days while the VP and air-packaged mussel samples remained acceptable until ca days 10-11 and 8-9 of storage respectively. Based primarily on sensory, but also on biochemical and microbiological parameters determined, M2 gas mixture was the most effective for mussel preservation achieving a shelf-life of ca 14-15 days. SIGNIFICANCE AND IMPACT OF THE STUDY: MAP (M2) can be used to increase the shelf-life of refrigerated mussels. A shelf-life extension of refrigerated mussels by ca 5-6 days under MAP may be obtained.  相似文献   
3.
Many of the directives that relate to the prevention of pollution or the improvement of fresh water also relate to lake waters since lake waters ultimately inherit much of the pollution that enters into fresh water. In order to determine the influence of the water depth on Clostridium perfringens, we utilised a new medium, lactose-sulfite (LS) broth, suggested for rapid enumeration and identification of C. perfringens. Duplicate samples were collected at each one of the following sites of the polluted station: surface, 60 cm, 90 cm and bottom (1.18 cm). Membrane filtration equipment was used. All samples were alternatively passed through two membrane filters, the first (20-25 microm pore size) was used for retention of the abundant phytoplankton and the second (porosity 0.45 microm) for C. perfringens. Membranes were placed into the first tube of ten-fold dilutions from 10(1) to 10(4) and incubated aerobically in a waterbath at 46 degrees C for 24 h. The numbers of C. perfringens fluctuated depending on the water depth. Vegetative forms were found only in the bottom sampling; they were never found in surface, 60 cm and 90 cm sampling sites. Sporulated forms were found in all sampling sites with the exception of the surface sampling. Clostridium perfringens as an anaerobic bacterium never occurred in the surface waters in vegetative or spore forms, even if the waters were extremely polluted by domestic or industrial activities. Vegetative forms occurred only in the bottom samples but spore forms which are more resistant to various environmental effects occurred in all depths except for the surface.  相似文献   
4.
This study evaluated the formation of biogenic amines (BAs) in breast chicken meat during storage under aerobic and modified atmospheric packaging (MAP) conditions at 4 °C, the correlation of microbial and sensory changes in chicken meat with formation of BAs and the possible role of BAs as indicators of poultry meat spoilage. Poultry breast fillets were stored aerobically or under MAP (30%, CO2, 70% N2) at 4 °C for up to 17 days. Quality evaluation was carried out using microbiological, chemical and sensory analyses. Total viable counts, Pseudomonads and Enterobacteriaceae, were in general higher for chicken samples packaged in air whereas lactic acid bacteria (LAB) and Enterobacteriaceae were among the dominant species for samples under MAP. Levels of putrescine and cadaverine increased linearly with storage time and were higher in aerobically stored chicken samples. Spermine and spermidine levels were also detected in both aerobically and MAP stored chicken meat. Levels of tyramine in both chicken samples stored aerobically and or under MAP were low (< 10 mg kg−1) whereas the formation of histamine was only observed after day 11 of storage when Enterobacteriaceae had reached a population of ca. 107 CFU g−1. Based on sensory and microbiological analyses and also taking into account a biogenic amines index (BAI, sum of putrescine, cadaverine and tyramine), BAI values between 96 and 101 mg kg−1 may be proposed as a quality index of MAP and aerobically-packaged fresh chicken meat. Spermine and spermidine decreased steadily throughout the entire storage period of chicken meat under aerobic and MAP packaging, and thus these two amines cannot be used as indicators of fresh chicken meat quality.  相似文献   
5.
Biosorption of copper by Pseudomonas cepacia was found to be dependent on added copper concentration. Copper uptake by the cells was rapid over the range of copper concentrations tested and complete within the first 10 min of incubation time. The effect of pH on copper uptake by P. cepacia was determined using overlapping buffers over the pH range 3–8, and copper biosorption from a 10 mM copper solution was greatest at pH 7. Copper uptake (measured by analysis of cell digests) was unaffected by cyanide and azide (up to 30 mM) and by incubation of cells with a 10 mM copper solution at 4 °C. Evidence from these results suggested that copper uptake by P. cepacia cells involves surface binding and not intracellular accumulation by active transport. Biosorption of copper by various Pseudomonas isolates from metal-contaminated environments agreed well with copper biosorption by Pseudomonas strains from the National Collection of Type Cultures (NCTC).  相似文献   
6.
Abstract The technique of differential pulse polarography is shown here for the first time to be applicable to monitoring directly the uptake of metal ions from solution by live bacteria in the chamber of the polarograph. The potential at which the polarographic current peak is observed is characteristic of the metal, whereas peak height is proportional to metal concentration. Adding solutions of Cd(II) or Zn(II) to a suspension of Pseudomonas cepacia in 50 mM Hepes buffer (pH 7.4) in the chamber gave polarographic peaks of lower amplitude than those observed when these metal solutions were added to buffer alone, due to metal binding or uptake by cells. Langmuir plots gave binding capacities of 0.13 and 0.20 mmol metal (Dd or Zn, respectively) per g (dry weight) biomass. Ni(II) uptake was biphasic. Metal uptake increased with pH. The value of polarography for rapid assessment of metal removal by cells and the ability to measure uptake from multi-metal solutions is demonstrated.  相似文献   
7.
Micro-Organism-Gold Interactions   总被引:1,自引:0,他引:1  
  相似文献   
8.
Recovery of gold from thiourea solutions using microorganisms   总被引:4,自引:0,他引:4  
I. Savvaidis 《Biometals》1998,11(2):145-151
The recovery of gold from gold-thiourea solutions using various types of waste biomass was investigated. All organisms tested, namely, Saccharomyces cerevisiae, Spirulina platensis and Streptomyces erythraeus removed gold rapidly from gold–thiourea solutions. The process of gold accumulation was pH-dependent for Saccharomyces ceresvisiae and Streptomyces erythraeus and independent of pH in the case of Spirulina platensis. Of all strains of microorganisms examined, Spirulina platensis had the highest affinity and capacity for gold even at low pH values. Thus, all three microorganisms tested for their ability to recover gold from gold–thiourea solutions can therefore be used in biotechnological applications, especially Spirulina platensis which has the highest binding capacity for gold at low pH values. © Rapid Science 1998  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号