全文获取类型
收费全文 | 172篇 |
免费 | 2篇 |
专业分类
174篇 |
出版年
2021年 | 1篇 |
2020年 | 1篇 |
2019年 | 1篇 |
2018年 | 3篇 |
2017年 | 3篇 |
2016年 | 5篇 |
2015年 | 4篇 |
2014年 | 9篇 |
2013年 | 16篇 |
2012年 | 13篇 |
2011年 | 8篇 |
2010年 | 5篇 |
2009年 | 9篇 |
2008年 | 15篇 |
2007年 | 9篇 |
2006年 | 13篇 |
2005年 | 6篇 |
2004年 | 4篇 |
2003年 | 3篇 |
2002年 | 3篇 |
2001年 | 9篇 |
2000年 | 2篇 |
1999年 | 3篇 |
1998年 | 6篇 |
1997年 | 1篇 |
1996年 | 1篇 |
1995年 | 3篇 |
1994年 | 2篇 |
1992年 | 2篇 |
1991年 | 3篇 |
1987年 | 1篇 |
1986年 | 2篇 |
1985年 | 1篇 |
1983年 | 1篇 |
1980年 | 1篇 |
1978年 | 1篇 |
1977年 | 1篇 |
1973年 | 2篇 |
1970年 | 1篇 |
排序方式: 共有174条查询结果,搜索用时 0 毫秒
1.
2.
Sanne-Meike Belderok Anneke van den Hoek Will Roeffen Robert Sauerwein Gerard J. B. Sonder 《PloS one》2013,8(2)
Background
We conducted a prospective study in a cohort of short-term travelers assessing the incidence rate of anti-circumsporozoite seroconversion, adherence to chemoprophylaxis, symptoms of malaria during travel, and malaria treatment abroad.Methods
Adults were recruited from the travel clinic of the Public Health Service Amsterdam. They kept a structured daily travel diary and donated blood samples before and after travel. Blood samples were serologically tested for the presence of Plasmodium falciparum anti-circumsporozoite antibodies.Results
Overall, the incidence rate (IR) of anti-circumsporozoite seroconversion was 0.8 per 100 person-months. Of 945 travelers, 620 (66%) visited high-endemic areas and were advised about both chemoprophylaxis and preventive measures against mosquito bites. Most subjects (520/620 = 84%) took at least 75% of recommended prophylaxis during travel. Travel to Africa, use of mefloquine, travel duration of 14–29 days in endemic areas, and concurrent use of DEET (N,N-diethyl-meta-toluamide) were associated with good adherence practices. Four travelers without fever seroconverted, becoming anti-circumsporozoite antibody-positive. All four had been adherent to chemoprophylaxis; two visited Africa, one Suriname, one India. Ten subjects with fever were tested for malaria while abroad and of these, three received treatment. All three were adherent to chemoprophylaxis and tested negative for anti-circumsporozoite antibodies.Conclusion
Travel to Africa, using mefloquine, travel duration of 14–29 days in endemic areas, and use of DEET were associated with good adherence to chemoprophylaxis. The combination of chemoprophylaxis and other preventive measures were sufficient to protect seroconverting travelers from clinical malaria. Travelers who were treated for malaria abroad did not seroconvert. 相似文献3.
Yalaoui S Huby T Franetich JF Gego A Rametti A Moreau M Collet X Siau A van Gemert GJ Sauerwein RW Luty AJ Vaillant JC Hannoun L Chapman J Mazier D Froissard P 《Cell host & microbe》2008,4(3):283-292
Infection of hepatocytes by Plasmodium falciparum sporozoites requires the host tetraspanin CD81. CD81 is also predicted to be a coreceptor, along with scavenger receptor BI (SR-BI), for hepatitis C virus. Using SR-BI-knockout, SR-BI-hypomorphic and SR-BI-transgenic primary hepatocytes, as well as specific SR-BI-blocking antibodies, we demonstrate that SR-BI significantly boosts hepatocyte permissiveness to P. falciparum, P. yoelii, and P. berghei entry and promotes parasite development. We show that SR-BI, but not the low-density lipoprotein receptor, acts as a major cholesterol provider that enhances Plasmodium infection. SR-BI regulates the organization of CD81 at the plasma membrane, mediating an arrangement that is highly permissive to penetration by sporozoites. Concomitantly, SR-BI upregulates the expression of the liver fatty-acid carrier L-FABP, a protein implicated in Plasmodium liver-stage maturation. These findings establish the mechanistic basis of the CD81-dependent Plasmodium sporozoite invasion pathway. 相似文献
4.
Ivo H. J. Ploemen Miguel Prudêncio Bruno G. Douradinha Jai Ramesar Jannik Fonager Geert-Jan van Gemert Adrian J. F. Luty Cornelus C. Hermsen Robert W. Sauerwein Fernanda G. Baptista Maria M. Mota Andrew P. Waters Ivo Que Clemens W. G. M. Lowik Shahid M. Khan Chris J. Janse Blandine M. D. Franke-Fayard 《PloS one》2009,4(11)
The quantitative analysis of Plasmodium development in the liver in laboratory animals in cultured cells is hampered by low parasite infection rates and the complicated methods required to monitor intracellular development. As a consequence, this important phase of the parasite''s life cycle has been poorly studied compared to blood stages, for example in screening anti-malarial drugs. Here we report the use of a transgenic P. berghei parasite, PbGFP-Luccon, expressing the bioluminescent reporter protein luciferase to visualize and quantify parasite development in liver cells both in culture and in live mice using real-time luminescence imaging. The reporter-parasite based quantification in cultured hepatocytes by real-time imaging or using a microplate reader correlates very well with established quantitative RT-PCR methods. For the first time the liver stage of Plasmodium is visualized in whole bodies of live mice and we were able to discriminate as few as 1–5 infected hepatocytes per liver in mice using 2D-imaging and to identify individual infected hepatocytes by 3D-imaging. The analysis of liver infections by whole body imaging shows a good correlation with quantitative RT-PCR analysis of extracted livers. The luminescence-based analysis of the effects of various drugs on in vitro hepatocyte infection shows that this method can effectively be used for in vitro screening of compounds targeting Plasmodium liver stages. Furthermore, by analysing the effect of primaquine and tafenoquine in vivo we demonstrate the applicability of real time imaging to assess parasite drug sensitivity in the liver. The simplicity and speed of quantitative analysis of liver-stage development by real-time imaging compared to the PCR methodologies, as well as the possibility to analyse liver development in live mice without surgery, opens up new possibilities for research on Plasmodium liver infections and for validating the effect of drugs and vaccines on the liver stage of Plasmodium. 相似文献
5.
Melissa R. van Dijk Ben C. L. van Schaijk Shahid M. Khan Maaike W. van Dooren Jai Ramesar Szymon Kaczanowski Geert-Jan van Gemert Hans Kroeze Hendrik G. Stunnenberg Wijnand M. Eling Robert W. Sauerwein Andrew P. Waters Chris J. Janse 《PLoS pathogens》2010,6(4)
The process of fertilization is critically dependent on the mutual recognition of gametes and in Plasmodium, the male gamete surface protein P48/45 is vital to this process. This protein belongs to a family of 10 structurally related proteins, the so called 6-cys family. To identify the role of additional members of this family in Plasmodium fertilisation, we performed genetic and functional analysis on the five members of the 6-cys family that are transcribed during the gametocyte stage of P. berghei. This analysis revealed that in addition to P48/45, two members (P230 and P47) also play an essential role in the process of parasite fertilization. Mating studies between parasites lacking P230, P48/45 or P47 demonstrate that P230, like P48/45, is a male fertility factor, consistent with the previous demonstration of a protein complex containing both P48/45 and P230. In contrast, disruption of P47 results in a strong reduction of female fertility, while males remain unaffected. Further analysis revealed that gametes of mutants lacking expression of p48/45 or p230 or p47 are unable to either recognise or attach to each other. Disruption of the paralog of p230, p230p, also specifically expressed in gametocytes, had no observable effect on fertilization. These results indicate that the P. berghei 6-cys family contains a number of proteins that are either male or female specific ligands that play an important role in gamete recognition and/or attachment. The implications of low levels of fertilisation that exist even in the absence of these proteins, indicating alternative pathways of fertilisation, as well as positive selection acting on these proteins, are discussed in the context of targeting these proteins as transmission blocking vaccine candidates. 相似文献
6.
7.
8.
Ivo H. J. Ploemen Huib J. Croes Geert-Jan J. van Gemert Mietske Wijers-Rouw Cornelus C. Hermsen Robert W. Sauerwein 《PloS one》2012,7(12)
The proteins P52 and P36 are expressed in the sporozoite stage of the murine malaria parasite Plasmodium berghei. Δp52&p36 sporozoites lacking expression of both proteins are severely compromised in their capability to develop into liver stage parasites and abort development soon after invasion; presumably due to the absence of a parasitophorous vacuole membrane (PVM). However, a small proportion of P. berghei Δp52&p36 parasites is capable to fully mature in hepatocytes causing breakthrough blood stage infections. We have studied the maturation of replicating Δp52&p36 parasites in cultured Huh-7 hepatocytes. Approximately 50% of Δp52&p36 parasites developed inside the nucleus of the hepatocyte but did not complete maturation and failed to produce merosomes. In contrast cytosolic Δp52&p36 parasites were able to fully mature and produced infectious merozoites. These Δp52&p36 parasites developed into mature schizonts in the absence of an apparent parasitophorous vacuole membrane as shown by immunofluorescence and electron microscopy. Merozoites derived from these maturing Δp52&p36 liver stages were infectious for C57BL/6 mice. 相似文献
9.
By incorporating annotation information into the analysis of next-generation sequencing DNA methylation data, we provide an improvement in performance over current testing procedures. Methylation analysis using genome information (MAGI) is applicable for both unreplicated and replicated data, and provides an effective analysis for studies with low sequencing depth. When compared with current tests, the annotation-informed tests provide an increase in statistical power and offer a significance-based interpretation of differential methylation. 相似文献
10.
Annemarie Voorberg-van der Wel Anne-Marie Zeeman Sandra M. van Amsterdam Alexander van den Berg Els J. Klooster Shiroh Iwanaga Chris J. Janse Geert-Jan van Gemert Robert Sauerwein Niels Beenhakker Gerrit Koopman Alan W. Thomas Clemens H. M. Kocken 《PloS one》2013,8(1)
A major challenge for strategies to combat the human malaria parasite Plasmodium vivax is the presence of hypnozoites in the liver. These dormant forms can cause renewed clinical disease after reactivation through unknown mechanisms. The closely related non-human primate malaria P. cynomolgi is a frequently used model for studying hypnozoite-induced relapses. Here we report the generation of the first transgenic P. cynomolgi parasites that stably express fluorescent markers in liver stages by transfection with novel DNA-constructs containing a P. cynomolgi centromere. Analysis of fluorescent liver stages in culture identified, in addition to developing liver-schizonts, uninucleate persisting parasites that were atovaquone resistant but primaquine sensitive, features associated with hypnozoites. We demonstrate that these hypnozoite-forms could be isolated by fluorescence-activated cell sorting. The fluorescently-tagged parasites in combination with FACS-purification open new avenues for a wide range of studies for analysing hypnozoite biology and reactivation. 相似文献