首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8288篇
  免费   372篇
  8660篇
  2023年   23篇
  2022年   45篇
  2021年   112篇
  2020年   75篇
  2019年   72篇
  2018年   119篇
  2017年   88篇
  2016年   173篇
  2015年   243篇
  2014年   307篇
  2013年   513篇
  2012年   505篇
  2011年   490篇
  2010年   323篇
  2009年   325篇
  2008年   557篇
  2007年   512篇
  2006年   485篇
  2005年   509篇
  2004年   541篇
  2003年   484篇
  2002年   408篇
  2001年   138篇
  2000年   112篇
  1999年   115篇
  1998年   109篇
  1997年   90篇
  1996年   57篇
  1995年   63篇
  1994年   61篇
  1993年   57篇
  1992年   100篇
  1991年   58篇
  1990年   63篇
  1989年   86篇
  1988年   62篇
  1987年   56篇
  1986年   43篇
  1985年   51篇
  1984年   34篇
  1983年   24篇
  1982年   37篇
  1981年   31篇
  1980年   20篇
  1979年   28篇
  1978年   19篇
  1977年   23篇
  1973年   22篇
  1970年   19篇
  1967年   20篇
排序方式: 共有8660条查询结果,搜索用时 15 毫秒
1.
Heterodichogamy is a form of sex expression in which protandrous and protogynous individuals coexist, and is considered to be a mechanism that avoids selfing and promotes disassortative mating. We examined mating patterns in a heterodichogamous maple, Acer mono, using microsatellite markers. Parentage analysis revealed a selfing rate of only 9.8%. Disassortative mating between flowering types significantly exceeded within-type mating, but the mating patterns were better explained by flowering phenology (i.e., the temporal overlap between the female and male stages). Heterodichogamy in A. mono thus appears to promote outcrossing without requiring obligate self- or cross-incompatibility systems, although it did not guarantee disassortative mating. Multiple-regression analysis suggested that successful reproduction of pollen parents significantly increased with increased flower production and reciprocal flowering synchrony, but decreased only marginally with mating distance, although the distribution of mating distances suggested leptokurtic dispersal of pollen.  相似文献   
2.
We found that the gradient of a host-specific attractant, cochliophilin A (5-hydroxy-6,7-methylenedioxyflavone) isolated from the roots of spinach triggered encystment followed by germination of zoospores of Aphanomyces cochlioidesat a concentration less than micromolar order. This compound did not affect the growth and reproduction of this phytopathogen up to 10–6 M concentration in the culture medium. We also observed that mastoparan, an activator of heterotrimeric G-protein could inhibit the motility of zoospores and then strikingly effect encystment followed by 60–80% germination of cysts. Concomitant application of cochliophilin A and mastoparan showed stronger encystment followed by 100% germination of cysts. In addition, we have observed that chemicals interfering with phospholipase C activity (neomycin) and Ca2+ influx/release (EGTA and loperamide) suppress cochliophilin A or mastoparan induced encystment and germination. These results suggest that G-protein mediated signal transduction mechanism may be involved in the differentiation of the A. cochlioides zoospores. This is the first report on the differentiation of oomycete zoospores initiated by a host-specific plant signal or a G-protein activator.  相似文献   
3.
Elongation growth of hypocotyl sections of Vigna unguiculata under xylem perfusion was significantly enhanced when acid was applied by acid-aerosol to an abraded hypocotyl surface in the air. The in vivo wall extensibility (φ) and the effective turgor (Pi– Y), both of which were determined by the pressure-jump method, increased during acid-induced growth as observed in IAA-induced growth. The intracellular pressure (Pi), however, decreased significantly at the beginning of acid-induced growth whereas Pi scarcely changed in IAA-induced growth. This result indicates that protons increase the effective turgor by decreasing the yield threshold as IAA does. There seems to be no essential difference between proton and auxin in the effects on the in vivo mechanical properties of the surface cell wall.  相似文献   
4.
Yeast is widely used to determine the tertiary structure of eukaryotic proteins, because of its ability to undergo post-translational modifications such as glycosylation. A mutant lacking S -adenosylmethionine synthesis has been reported as a suitable host for producing selenomethionine derivatives, which can help solve phase problems in protein crystallography. However, the mutant required external addition of S -adenosylmethionine for cell proliferation. Here, a selenomethionine-resistant Pichia pastoris mutant that showed S -adenosylmethionine autotrophy was isolated. Human lysozyme expressed by the mutant under the control of constitutive promoter contained selenomethionine at 65% occupancy, sufficient for use as a selenomethionine derivative for single-wavelength anomalous dispersion phasing.  相似文献   
5.
    
An immunohistological study demonstrated that glucagon first appears in the dorsal pancreatic endoderm of the chick embryo at stage 16 of Hamburger and Hamilton during normal development. It was also shown that the self-differentiation potency of the isolated dorsal endoderm to express glucagon in vitro in the absence of adjoining tissues appears at stage 11.  相似文献   
6.
Type C atrial natriuretic peptide (ANP) receptor levels in cultured vascular endothelial cells were found to be very sensitive to NaCl and shown to be inversely related to the magnitude of ANP-induced cGMP response of the cells. Endothelial cells from bovine carotid artery were subcultured in Eagle's minimum essential medium supplemented with 10% fetal bovine serum (MEM-FBS) and in MEM-FBS plus 25 and 50 mM NaCl. Determination, after several passages, of ANP receptor levels in these cells by 125I-ANP binding assay and affinity labeling revealed a marked reduction in the number of type C receptor in the NaCl-treated cells, whereas type A receptor density was not affected. RNase protection assay to estimate the levels of type C receptor mRNA indicated that the reduction occurred at a pre-translational level. In spite of the decrease in type C receptor number and no significant change in type A receptor (i.e. particulate guanylate cyclase) levels, cGMP response of the NaCl-treated cells to ANP was greatly exaggerated; this sensitization was also observed in membrane preparations. Simple masking of type C ANP receptor with C-ANF (des-[Gln18,Ser19,Gly20,Leu21,Gly22]ANP), a ring-deleted ANP analog, did not produce any sensitization of the cGMP response to ANP; therefore, the above phenomenon cannot simply be explained by the clearance function of the type C receptor. Although whether the type C receptor depletion is directly related to the sensitization of the type A receptor/cyclase is not known, the phenomenon reported and characterized here will serve as a useful basis for elucidating ANP receptor regulation and activation.  相似文献   
7.
Escherichia coli carrying a natural conjugative F-plasmid generates F-pili mating pairs, which is important for early biofilm formation. In this study, we investigated the effect of male-specific filamentous single stranded DNA bacteriophage (f1) and RNA bacteriophage (MS2) on the formation of biofilms by E. coli carrying a natural conjugative F-plasmid. We showed that the early biofilm formation was completely inhibited by addition of the f1 phage, but not the MS2 phage. This suggests that the tip of F-pili is the specific attachment site for mating pairs formation and the side of F-pili has a non-obligatory role during biofilm formation. The inhibitory effect of the f1 phage was dependent on the time of addition during the biofilm formation. No inhibitory effect was observed when the f1 phages were added to the mature biofilms. This resistant mechanism of the mature biofilms could be attributed to the biofilm-specific phenotypes representing that the F-pili mating pairs were already formed and then the curli production commenced during the biofilm maturation. The pre-formed mating pairs seemed to resist the f1 phages. Altogether, our results indicate a close relationship between the presence of conjugative plasmid and male-specific bacteriophages within sessile biofilm communities, as well as the possibility of using the male-specific bacteriophages to control biofilm formation.  相似文献   
8.
9.
    
The analysis of newt lens regeneration has been an important subject in developmental biology. Recently, it has been reported that the genes involved in the normal eye development are also expressed in the regenerative process of lens regeneration in the adult newt. However, functional analysis of these genes has not been possible, because there is no system to introduce genes efficiently into the cells involved in the regeneration. In the present study, lipofection was used as the method for gene transfer in cultured pigmented iris cells that can transdifferentiate into lens cells in newt lens regeneration. Positive expression of a reporter gene was obtained in more than 70% of cells. In addition, the aggregate derived from gene-transfected cells maintained its expression at a high level for a long time within the host tissue. To verify the effectiveness of this model system with a reporter gene in lens regeneration, Pax6, which is suggested to be involved in normal eye development and lens regeneration, was transfected. Ectopic expression of lens-specific crystallins was obtained in cells that show no such activity in normal lens regeneration. These results made it possible for the first time to analyze the molecular mechanism of lens regeneration in the adult newt.  相似文献   
10.
Pantothenate kinase (CoaA) catalyzes the first step of the coenzyme A (CoA) biosynthetic pathway and controls the intracellular concentrations of CoA through feedback inhibition in bacteria. An alternative enzyme found in archaea, pantoate kinase, is missing in the order Thermoplasmatales. The PTO0232 gene from Picrophilus torridus, a thermoacidophilic euryarchaeon, is shown to be a distant homologue of the prokaryotic type I CoaA. The cloned gene clearly complements the poor growth of the temperature-sensitive Escherichia coli CoaA mutant strain ts9, and the recombinant protein expressed in E. coli cells transfers phosphate to pantothenate at pH 5 and 55°C. In contrast to E. coli CoaA, the P. torridus enzyme is refractory to feedback regulation by CoA, indicating that in P. torridus cells the CoA levels are not regulated by the CoaA step. These data suggest the existence of two subtypes within the class of prokaryotic type I CoaAs.Coenzyme A (CoA) is an essential cofactor synthesized from pantothenate (vitamin B5), cysteine, and ATP (1, 20, 30). The thiol group derived from the cysteine moiety in a CoA molecule forms a thioester bond, which is a high-energy bond, with carboxylates including fatty acids. The resulting compounds are called acyl-CoAs (CoA thioesters) and function as the major acyl group carriers in numerous metabolic and energy-yielding pathways. Since it is thought that the pantetheine moiety in CoA existed when life first came about on Earth (25) and at present, a CoA, acyl-CoA, or 4′-phosphopantethein moiety that is common to CoA and acyl carrier proteins is utilized by about 4% of all enzymes as a substrate (6), these compounds are thought to play a crucial role in the earliest metabolic system.Bacteria, fungi, and plants can produce pantothenate, which is the starting material of CoA biosynthesis, although animals must take it from their diet (41). The canonical CoA biosynthetic pathway consists of five enzymatic steps: i.e., pantothenate kinase (CoaA in prokaryotes and PanK in eukaryotes; EC 2.7.1.33), phosphopantothenoylcysteine synthetase (CoaB; EC 6.3.2.5), phosphopantothenoylcysteine decarboxylase (CoaC: EC 4.1.1.36), phosphopantetheine adenylyltransferase (CoaD; EC 2.7.7.3), and dephospho-CoA kinase (CoaE; EC 2.7.1.24). The organisms belonging to the domains Bacteria and Eukarya have this pathway (20, 30). CoaB, CoaC, CoaD, and CoaE are detectable in the complete genome sequences as orthologs of the counterparts from E. coli and humans (15, 16, 32). However, there is diversity among the CoaAs and PanKs, depending on their primary structures, and to date, three types of CoaA in bacteria and one type of PanK in eukaryotes have been identified. CoaAs and PanK catalyze the phosphorylation of pantothenate to produce 4′-phosphopantothenate at the first step of the pathway. First, the Escherichia coli CoaA (CoaAEc) was cloned as a prokaryotic type I CoaA after characterization of the properties enzymatically (42-44, 48). Thereafter, the eukaryotic PanK isoforms were isolated from Aspergillus nidulans (AnPanK), mice (mPanK), and humans (hPanK) (10, 17, 28, 29, 33, 34, 54-56). These enzyme activities were clearly regulated by end products of the biosynthetic pathway such as CoA, acetyl-CoA, and malonyl-CoA, and the pantothenate kinases governed the intracellular concentrations of CoA and acyl-CoAs (10, 17, 28, 29, 33, 34, 43, 44, 48, 54, 55). However, CoaAs insensitive to CoA and acyl-CoAs were recently identified from Staphylococcus aureus (CoaASa), Pseudomonas aeruginosa (CoaAPa), and Helicobacter pylori (CoaAHp) as prokaryotic type II and III CoaAs (9, 11, 18, 27). The structural and functional diversity among pantothenate kinases suggests that they are key indicators of the regulation of the CoA biosynthesis. In archaea neither CoaA nor pantothenate synthetase (PanC; EC 6.3.2.1), which catalyzes the condensation of pantoate and β-alanine to produce pantothenate, had been identified biochemically until very recently. COG1829 and COG1701 were assigned as the respective candidates based on comparative genomic analysis (15). COG1701 was reported to be PanC (36), and later the enzyme was revised to phosphopantothenate synthetase, which catalyzed the condensation of phosphopantoate and β-alanine (52). Together with the identification of COG1701, COG1829 was found to be pantoate kinase, responsible for the phosphorylation of pantoate (52). Homologues of pantoate kinase and phosphopantothenate synthetase are found in most archaeal genomes, thus establishing a noncanonical CoA biosynthetic pathway involving the two novel enzymes. However, homologues of the two novel enzymes are missing in the order Thermoplasmatales.Hence, we proceeded with a search for the kinase genes of the remaining archaea to elucidate the regulatory mechanism(s) underlying archaeal CoA biosynthesis. The PTO0232 gene in the complete genome sequence of Picrophilus torridus was identified as encoding a distant homologue of CoaAEc by a BLAST search. The recombinant protein phosphorylated pantothenate, but the activity was not inhibited at all by CoA or CoA thioesters despite its classification as prokaryotic type I CoaA. This functional difference between P. torridus CoaA (CoaAPt) and CoaAEc can be accounted for by an amino acid substitution at position 247 which possibly interacts with CoA. Here we describe the existence of a second subtype in the class of prokaryotic type I CoaAs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号