全文获取类型
收费全文 | 2433篇 |
免费 | 76篇 |
专业分类
2509篇 |
出版年
2022年 | 20篇 |
2021年 | 32篇 |
2020年 | 29篇 |
2019年 | 23篇 |
2018年 | 37篇 |
2017年 | 30篇 |
2016年 | 42篇 |
2015年 | 82篇 |
2014年 | 102篇 |
2013年 | 151篇 |
2012年 | 151篇 |
2011年 | 156篇 |
2010年 | 102篇 |
2009年 | 121篇 |
2008年 | 170篇 |
2007年 | 159篇 |
2006年 | 164篇 |
2005年 | 138篇 |
2004年 | 139篇 |
2003年 | 144篇 |
2002年 | 143篇 |
2001年 | 20篇 |
2000年 | 23篇 |
1999年 | 16篇 |
1998年 | 13篇 |
1997年 | 19篇 |
1996年 | 19篇 |
1995年 | 22篇 |
1994年 | 16篇 |
1993年 | 21篇 |
1992年 | 10篇 |
1991年 | 11篇 |
1990年 | 11篇 |
1989年 | 17篇 |
1988年 | 12篇 |
1987年 | 13篇 |
1986年 | 7篇 |
1985年 | 13篇 |
1984年 | 10篇 |
1983年 | 7篇 |
1982年 | 15篇 |
1981年 | 16篇 |
1980年 | 4篇 |
1979年 | 5篇 |
1978年 | 7篇 |
1977年 | 5篇 |
1976年 | 7篇 |
1975年 | 7篇 |
1973年 | 7篇 |
1966年 | 4篇 |
排序方式: 共有2509条查询结果,搜索用时 0 毫秒
1.
Matrix Gla protein (MGP) regulates calcification in cartilage and arteries. MGP synthesis during embryonic development and its binding and regulation of growth factors and morphogens of the TGF-beta/BMP superfamily suggests that it has additional functions. Assay by far-western gel overlays and gel filtration shift shows MGP binds vitronectin. Binding is saturable and consistent with a single class of binding sites. MGP binds to vitronectin but not collagen, fibromodulin, heparin, osteocalcin, chondroitin sulfate, laminin, ovalbumin or albumin. We have identified a vitronectin binding site within a 17-amino acid peptide 61-77 near the carboxyl-terminus that corresponds to a naturally occurring MGP C-terminus. MGP and the 61-77 MGP peptide also binds to fibronectin. MGP and vitronectin are focally co-localized in embryonic tissues. Co-localization in vivo suggests that the MGP and vitronectin interactions may modify cell-matrix interactions. Alternatively, vitronectin-bound MGP may have altered function for modulating BMP2 or TGF-beta activity. The current study demonstrates that MGP has a novel binding activity for vitronectin, an extracellular protein that promotes cell-matrix interactions and regulates coagulation. 相似文献
2.
Funamoto S Anjard C Nellen W Ochiai H 《Differentiation; research in biological diversity》2003,71(1):51-61
In eukaryotic cells, the universal second messenger cAMP regulates various aspects of development and differentiation. The primary target for cAMP is the regulatory subunit of cAMP-dependent protein kinase A (PKA), which, upon cAMP binding, dissociates from the catalytic subunit and thus activates it. In the soil amoeba Dictyostelium discoideum, the function of PKA in growth, development and cell differentiation has been thoroughly investigated and substantial information is available. To obtain a more general view, we investigated the influence of PKA on development of the related species Polysphondylium pallidum. Cells were transformed to overexpress either a dominant negative mutant of the regulatory subunit (Rm) from Dictyostelium that cannot bind cAMP, or the catalytic subunit (PKA-C) from Dictyostelium. Cells overexpressing Rm rarely aggregated and the few multicellular structures developed slowly into very small fruiting bodies without branching of secondary sorogens, the prominent feature of Polysphondylium. Few round spores with reduced viability were formed. When mixed with wild-type cells and allowed to develop, the Rm cells were randomly distributed in aggregation streams, but were later found in the posterior region of the culminating slug or were left behind on the surface of the substratum. The PKA-C overexpressing cells exhibited precocious development and formed more aggregates of smaller size. Moreover, expression of PKA-C under the control of the prestalk-specific ecmB promoter of Dictyostelium leads to protrusions from aggregation streams. We conclude that Dictyostelium PKA subunits introduced into Polysphondylium cells are functional as signal components, indicating that a biochemically similar PKA mechanism works in Polysphondylium. 相似文献
3.
4.
N-haloacetylimino neonicotinoids: potency and molecular recognition at the insect nicotinic receptor
Tomizawa M Durkin KA Ohno I Nagura K Manabe M Kumazawa S Kagabu S 《Bioorganic & medicinal chemistry letters》2011,21(12):3583-3586
This structure-activity relationship study for neonicotinoids with an N-haloacetylimino pharmacophore identifies several candidate compounds showing outstanding insecticidal potency and consequently leads to establishing their molecular recognition at an insect nicotinic receptor structural model, wherein the neonicotinoid halogen atoms (fluorine, chlorine, bromine, and iodine) variously interact with the receptor loops C-D interfacial niche via H-bonding and/or hydrophobic interactions. 相似文献
5.
Shintani S Kamakura N Kobata M Toyosawa S Onishi T Sato A Kawasaki K Weiss KM Ooshima T 《Gene》2008,424(1-2):11-17
Integrin-binding sialoprotein (IBSP) is a member of the small integrin-binding ligand N-linked glycoprotein (SIBLING) family; and the whole SIBLING family is further included in a larger secretory calcium-binding phosphoprotein (SCPP) family. SIBLING proteins are known to construct a part of the non-collagenous extracellular matrices of calcified tissues, and considered to have arisen by duplication and subsequent divergent evolution of a single ancient gene. To understand the alterations of SIBLING molecules associated with the evolution of calcified tissues in vertebrates, we initiated a search for lower vertebrate orthologs of SIBLING genes. In the present study, an IBSP ortholog from a reptile (caiman) and two distinct orthologs from an amphibian (African clawed toad) were identified and characterized. As expected, the toad IBSP genes were transcribed only in calcified tissue (jaw and tibia), as also seen in mammals. The caiman, toad, avian, and mammalian IBSPs share several unique features specific for IBSP and apparently have similar properties. Furthermore, analysis of the sequences suggested that the IBSP molecule might have gradually intensified its functions related to calcification during its evolutionary process through tetrapods. 相似文献
6.
Hasegawa T Bando A Tsuchiya K Abe S Okamoto M Kirima K Ueno S Yoshizumi M Houchi H Tamaki T 《Biochimica et biophysica acta》2004,1670(1):19-27
The nonenzymatic and enzymatic formation of reactive oxygen species (ROS) from LY83583 (6-anilino-5,8-quinolinequinone) was investigated by electron paramagnetic resonance (EPR) spectroscopy. In the presence of thiol compounds such as glutathione and L-cysteine, LY83583 underwent a one-electron reduction due to low redox potential (-0.3+/-0.01 V vs. SCE), followed by formation of LY83583 semiquinone anion radical. This species was characterized by EPR spectroscopy under an argon atmosphere at neutral pH. Under an aerobic condition, this species interacts with molecular oxygen to form a superoxide anion radical. GSH-conjugated LY83583 was also identified by NMR and FAB-MS. When LY83583 was applied to PC12 cells, ROS formation was completely inhibited by both the flavoenzyme inhibitor DPI and the DT-diaphorase inhibitor dicumarol. On the other hand, ROS generation occurred independent of intracellular GSH level. These results indicate that LY83583 can generate ROS both enzymatically and nonenzymatically, although the enzymatic formation is dominant over the nonenzymatic system in PC12 cells. 相似文献
7.
Azumi K Usami T Kamimura A Sabau SV Miki Y Fujie M Jung SJ Kitamura S Suzuki S Yokosawa H 《Zoological science》2007,24(12):1231-1240
A serious disease of the ascidian Halocynthia roretzi has been spread extensively among Korean aquaculture sites. To reveal the cause of the disease and establish a monitoring system for it, we constructed a cDNA microarray spotted with 2,688 cDNAs derived from H. roretzi hemocyte cDNA libraries to detect genes differentially expressed in hemocytes between diseased and non-diseased ascidians. We detected 21 genes showing increased expression and 16 genes showing decreased expression in hemocytes from diseased ascidians compared with those from non-diseased ascidians. RT-PCR analyses confirmed that the expression levels of genes encoding astacin, lysozyme, ribosomal protein PO, and ubiquitin-ribosomal protein L40e fusion protein were increased in hemocytes from diseased ascidians, while those of genes encoding HSP40, HSP70, fibronectin, carboxypeptidase and lactate dehydrogenase were decreased. These genes were expressed not only in hemocytes but also in various other tissues in ascidians. Furthermore, the expression of glutathione-S transferase omega, which is known to be up-regulated in H. roretzi hemocytes during inflammatory responses, was strongly increased in hemocytes from diseased ascidians. These gene expression profiles suggest that immune and inflammatory reactions occur in the hemocytes of diseased ascidians. These genes will be good markers for detecting and monitoring this disease of ascidians in Korean aquaculture sites. 相似文献
8.
Soji Kasayama Hiroshi Saito Haruhiko Kouhara Satoru Sumitani Bunzo Sato 《Journal of cellular physiology》1993,154(2):254-261
The androgen-dependent clonal cell line SC-3, derived from Shionogi carcinoma 115, secretes a fibroblast growth factor (FGF)-autocrine growth factor in response to androgen, which is able to bind to FGF receptors. In SC-3 cells, FGF receptor expression is upregulated by the SC-3-derived growth factor, providing a means of amplifying an autocrine loop of cell growth. In the present investigations, the effect of the polysulfonated naphthylurea suramin on this autocrine loop and its amplification in SC-3 cells were studied. Suramin inhibited androgen-dependent growth of SC-3 cells in a concentration-dependent fashion: ~50% inhibition was observed at 25 μM. [3H]Thymidine incorporation into the cells stimulated with partially purified SC-3-derived growth factor was inhibited by suramin in a similar way. Additionally, suramin inhibited acidic (a) or basic (b) FGF-induced cell proliferation, though relatively high concentrations were necessary to achieve the maximal inhibition. Pretreatment of SC-3 cells with suramin decreased cell surface 125I-bFGF binding without altering dissociation constant (Kd) of the binding sites. When the cells were incubated with 250 μM suramin for 24 h, the maximum binding (Bmax) decreased to almost 50% of the control. Treatment with suramin also decreased the levels of FGF receptor-1 mRNA to a similar extent, whereas it appeared not to affect the levels of β-actin mRNA. Moreover, suramin completely blocked androgen- or bFGF-induced accumulation of FGF receptor-1 mRNA. The inhibitory effects of suramin on FGF receptor expression were reversed by simultaneous addition of high concentrations of bFGF. These results indicate that suramin exerts its potent antiproliferative action on SC-3 cells through inhibition of an androgen-inducible autocrine loop involving SC-3-derived growth factor and FGF receptor. © 1993 Wiley-Liss, Inc. 相似文献
9.
Seiichi Koike Kazuko Keino-Masu Tatsuyuki Ohto Fumihiro Sugiyama Satoru Takahashi Masayuki Masu 《The Journal of biological chemistry》2009,284(48):33561-33570
Autotaxin, a lysophospholipase D encoded by the Enpp2 gene, is an exoenzyme that produces lysophosphatidic acid in the extracellular space. Lysophosphatidic acid acts on specific G protein-coupled receptors, thereby regulating cell growth, migration, and survival. Previous studies have revealed that Enpp2−/− mouse embryos die at about embryonic day (E) 9.5 because of angiogenic defects in the yolk sac. However, what cellular defects occur in Enpp2−/− embryos and what intracellular signaling pathways are involved in the phenotype manifestation remain unknown. Here, we show that Enpp2 is required to form distinctive large lysosomes in the yolk sac visceral endoderm cells. From E7.5 to E9.5, Enpp2 mRNA is abundantly expressed in the visceral endoderm cells. In Enpp2−/− mouse embryos, lysosomes in the visceral endoderm cells are fragmented. By using a whole embryo culture system combined with specific pharmacological inhibitors for intracellular signaling molecules, we show that lysophosphatidic acid receptors and the Rho-Rho-associated coiled-coil containing protein kinase (ROCK)-LIM kinase pathway are required to form large lysosomes. In addition, electroporation of dominant negative forms of Rho, ROCK, or LIM kinase also leads to the size reduction of lysosomes in wild-type visceral endoderm cells. In Enpp2−/− visceral endoderm cells, the steady-state levels of cofilin phosphorylation and actin polymerization are reduced. In addition, perturbations of actin turnover dynamics by actin inhibitors cytochalasin B and jasplakinolide result in the defect in lysosome formation. These results suggest that constitutive activation of the Rho-ROCK-LIM kinase pathway by extracellular production of lysophosphatidic acid by the action of autotaxin is required to maintain the large size of lysosomes in visceral endoderm cells. 相似文献
10.
Saito S Frank GD Mifune M Ohba M Utsunomiya H Motley ED Inagami T Eguchi S 《The Journal of biological chemistry》2002,277(47):44695-44700
Reactive oxygen species are involved in the mitogenic signal transduction cascades initiated by several growth factors and play a critical role in mediating cardiovascular diseases. Interestingly, H(2)O(2) induces tyrosine phosphorylation and trans-activation of the platelet-derived growth factor receptor and the epidermal growth factor receptor in many cell lines including vascular smooth muscle cells. To investigate the molecular mechanism by which reactive oxygen species contribute to vascular diseases, we have examined a signal transduction cascade involved in H(2)O(2)-induced platelet-derived growth factor receptor activation in vascular smooth muscle cells. We found that H(2)O(2) induced a ligand-independent phosphorylation of the platelet-derived growth factor-beta receptor at Tyr(1021), a phospholipase C-gamma binding site, involving the requirement of protein kinase C-delta and c-Src that is distinct from a ligand-dependent autophosphorylation. Also, H(2)O(2) induced the association of protein kinase C-delta with the platelet-derived growth factor-beta receptor and c-Src in vascular smooth muscle cells. These findings will provide new mechanistic insights by which enhanced reactive oxygen species production in vascular smooth muscle cells induces unique alleys of signal transduction distinct from those induced by endogenous ligands leading to an abnormal vascular remodeling process. 相似文献