首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   221篇
  免费   10篇
  2020年   6篇
  2018年   2篇
  2016年   3篇
  2015年   7篇
  2014年   5篇
  2013年   4篇
  2012年   9篇
  2011年   9篇
  2010年   4篇
  2009年   8篇
  2008年   3篇
  2007年   4篇
  2005年   2篇
  2004年   3篇
  2003年   8篇
  2002年   3篇
  2001年   3篇
  2000年   3篇
  1999年   4篇
  1998年   4篇
  1997年   2篇
  1989年   2篇
  1987年   2篇
  1986年   4篇
  1984年   2篇
  1977年   2篇
  1973年   2篇
  1972年   7篇
  1970年   3篇
  1960年   4篇
  1959年   2篇
  1957年   2篇
  1953年   3篇
  1947年   2篇
  1940年   2篇
  1938年   4篇
  1937年   2篇
  1936年   9篇
  1935年   5篇
  1934年   2篇
  1933年   8篇
  1932年   9篇
  1931年   9篇
  1930年   2篇
  1929年   7篇
  1924年   2篇
  1923年   3篇
  1920年   2篇
  1918年   3篇
  1910年   2篇
排序方式: 共有231条查询结果,搜索用时 15 毫秒
1.
2.
3.
4.
Reactive oxygen species (ROS) play a key role in the pathogenesis of proteinuria in glomerular diseases like diabetic nephropathy. Glomerular endothelial cell (GEnC) glycocalyx covers the luminal aspect of the glomerular capillary wall and makes an important contribution to the glomerular barrier. ROS are known to depolymerise glycosaminoglycan (GAG) chains of proteoglycans, which are crucial for the barrier function of GEnC glycocalyx. The aim of this study is to investigate the direct effects of ROS on the structure and function of GEnC glycocalyx using conditionally immortalised human GEnC. ROS were generated by exogenous hydrogen peroxide. Biosynthesis and cleavage of GAG chains was analyzed by radiolabelling (S35 and 3H-glucosamine). GAG chains were quantified on GEnC surface and in the cell supernatant using liquid chromatography and immunofluorescence techniques. Barrier properties were estimated by measuring trans-endothelial passage of albumin. ROS caused a significant loss of WGA lectin and heparan sulphate staining from the surface of GEnC. This lead to an increase in trans-endothelial albumin passage. The latter could be inhibited by catalase and superoxide dismutase. The effect of ROS on GEnC was not mediated via the GAG biosynthetic pathway. Quantification of radiolabelled GAG fractions in the supernatant confirmed that ROS directly caused shedding of HS GAG. This finding is clinically relevant and suggests a mechanism by which ROS may cause proteinuria in clinical conditions associated with high oxidative stress.  相似文献   
5.
6.
Low intensity resistance exercise (RE) with blood flow restriction (BFR) has gained attention in the literature due to the beneficial effects on functional and morphological variables, similar to those observed during traditional RE without BFR, while the effects of BFR on post-exercise hypotension remain unclear. The aim of the present study was to compare the blood pressure (BP) response of trained normotensive individuals to RE with and without BFR. In this cross-over randomized trial, eight male subjects (23.8 ± 4 years, 74 ± 3 kg, 174 ± 4 cm) completed two exercise protocols: traditional RE (3 x 10 repetitions at 70% one-repetition maximum [1-RM]) and low intensity RE (3 x 15 repetitions at 20% 1-RM) with BFR. Blood pressure measurements were performed after 15 min of seated rest (0), immediately after and 10 min, 20 min, 30 min, 40 min, 50 min and 60 min after the experimental sessions. Similar hypotensive effects for systolic BP (SBP) were observed for both protocols (P < 0.05) after exercise, with no differences between groups (P > 0.05) and no statistically significant difference for diastolic BP (P > 0.05). These results suggest that in normotensive trained individuals, both traditional RE and RE with BFR induce hypotension for SBP, which is important to prevent cardiovascular disturbances.  相似文献   
7.
Increasing evidence suggests that physical activity could delay or attenuate the symptoms of Alzheimer''s disease (AD). But the underlying mechanisms are still not fully understood. To investigate the effect of long-term treadmill exercise on the spatial memory of AD mice and the possible role of β-amyloid, brain-derived neurotrophic factor (BDNF) and microglia in the effect, male APPswe/PS1dE9 AD mice aged 4 months were subjected to treadmill exercise for 5 months with 6 sessions per week and gradually increased load. A Morris water maze was used to evaluate the spatial memory. Expression levels of β-amyloid, BDNF and Iba-1 (a microglia marker) in brain tissue were detected by immunohistochemistry. Sedentary AD mice and wildtype C57BL/6J mice served as controls. The results showed that 5-month treadmill exercise significantly decreased the escape latencies (P < 0.01 on the 4th day) and improved the spatial memory of the AD mice in the water maze test. Meanwhile, treadmill exercise significantly increased the number of BDNF-positive cells and decreased the ratios of activated microglia in both the cerebral cortex and the hippocampus. However, treadmill exercise did not significantly alleviate the accumulation of β-amyloid in either the cerebral cortex or the hippocampus of the AD mice (P > 0.05). The study suggested that long-term treadmill exercise could improve the spatial memory of the male APPswe/PS1dE9 AD mice. The increase in BDNF-positive cells and decrease in activated microglia might underpin the beneficial effect.  相似文献   
8.
The Vibrio cholerae MARTXVc toxin delivers three effector domains to eukaryotic cells. To study toxin delivery and function of individual domains, the rtxA gene was modified to encode toxin with an in‐frame beta‐lactamase (Bla) fusion. The hybrid RtxA::Bla toxin was Type I secreted from bacteria; and then Bla was translocated into eukaryotic cells and delivered by autoprocessing, demonstrating that the MARTXVc toxin is capable of heterologous protein transfer. Strains that produce hybrid RtxA::Bla toxins that carry one effector domain in addition to Bla were found to more efficiently translocate Bla. In cell biological assays, the actin cross‐linking domain (ACD) and Rho‐inactivation domain (RID) are found to cross‐link actin and inactivate RhoA, respectively, when other effector domains are absent, with toxin autoprocessing required for high efficiency. The previously unstudied alpha‐beta hydrolase domain (ABH) is shown here to activate CDC42, although the effect is ameliorated when RID is also present. Despite all effector domains acting on cytoskeleton assembly, the ACD was sufficient to rapidly inhibit macrophage phagocytosis. Both the ACD and RID independently disrupted polarized epithelial tight junction integrity. The sufficiency of ACD but strong selection for retention of RID and ABH suggests these two domains may primarily function by modulating cell signaling.  相似文献   
9.
Prominent vasculopathy in Fabry disease patients is caused by excessive intracellular accumulation of globotriaosylceramide (GL-3) throughout the vascular endothelial cells causing progressive cerebrovascular, cardiac and renal impairments. The vascular lesions lead to myocardial ischemia, atherogenesis, stroke, aneurysm, thrombosis, and nephropathy. Hence, injury to the endothelial cells in the kidney is a key mechanism in human glomerular disease and endothelial cell repair is an important therapeutic target. We investigated the mechanism of uptake of α-galactosidase A (α-Gal A) in renal endothelial cells, in order to clarify if the recombinant enzyme is targeted to the lysosomes via the universal mannose 6-phosphate receptor (M6PR) and possibly other receptors. Immunohistochemical localization of infused recombinant α-Gal A in a renal biopsy from a classic Fabry disease patient showed that recombinant protein localize in the endothelial cells of the kidney. Affinity purification studies using α-Gal A resins identified M6PR and sortilin as α-Gal A receptors in cultured glomerular endothelial cells. Immunohistochemical analyses of normal human kidney with anti-sortilin and anti-M6PR showed that sortilin and M6PR were expressed in the endothelium of smaller and larger vessels. Uptake studies in cultured glomerular endothelial cells of α-Gal A labeled with fluorescence and (125)I showed by inhibition with RAP and M6P that sortilin and M6PR mediated uptake of α-Gal A. Biacore studies revealed that α-Gal A binds to human M6PR with very high affinity, but M6PR also binds to sortilin in a way that prevents α-Gal A binding to sortilin. Taken together, our data provide evidence that sortilin is a new α-Gal A receptor expressed in renal endothelial cells and that this receptor together with the M6PR is able to internalize circulating α-Gal A during enzyme replacement therapy in patients with Fabry disease.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号