首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   26篇
  免费   1篇
  27篇
  2020年   1篇
  2018年   1篇
  2012年   1篇
  2011年   1篇
  2009年   1篇
  2008年   1篇
  2007年   2篇
  2002年   2篇
  2001年   1篇
  2000年   4篇
  1999年   2篇
  1998年   1篇
  1997年   1篇
  1996年   2篇
  1995年   2篇
  1994年   4篇
排序方式: 共有27条查询结果,搜索用时 2 毫秒
1.
The present study was conducted to identify the genetic factors controlling somatic embryogenesis in the sunflower. Two traits, the number of embryogenic explants per 40 explants plated (EE/40 E) and the number of embryos per 40 explants (E/40 E), were scored in 74 recombinant inbred lines (RILs) from a cross between ’PAC-2’ and ’RHA-266’. The experiment was designed as a randomized complete block with 76 genotypes (74 recombinant inbred lines and two parents) and three replications. Each replication consisted of three Erlenmeyer flasks with 40 epidermal layers (explants). Analyses of variance indicated the existence of highly significant differences among parental genotypes and their RILs. Heritabilities for the somatic embryogenesis traits studied, EE/40 E and E/40 E, were high (0.64 and 0.77 respectively) and the genetic gain, in percentage of the best parent for 10% of selected RILs, was significant. Four QTLs for EE/40 E (tee) and seven for E/40 E (ete) were detected using composite interval mapping and AFLP mapping. The QTLs for EE/40 E explained 48% of the phenotypic variation while the QTLs for E/40 E explained about 89% of the variation. Received:14 December 1999 / Accepted:18 May 2000  相似文献   
2.
In this study, using cumin embryo as explant and manipulating plant growth regulators (PGRs) in regeneration medium, the main in vitro morphogenesis pathways including direct shoot organogenesis, direct somatic embryogenesis, indirect somatic embryogenesis, and indirect shoot organogenesis were obtained. The effects of PGRs, subculture, and light on the induction and progression of different pathways were studied in detail. Direct shoot organogenesis occurred on the meristematic zone, while direct somatic embryogenesis was observed on hypocotyl part of cumin embryo (more differentiated part). Application of BAP (0.1 mgl−1) was the sole triggering factor for induction of callus and indirect regeneration pathways. Exogenous IAA played the central role in the direct somatic embryogenesis pathway; however, the combined effects of IAA and NAA along with the high endogenous cytokinin level resulted in direct shoot organogenesis. Subculturing revealed accelerating effects on direct somatic embryogenesis pathway and callus formation. Conversely, subculturing had negative effect on direct shoot organogenesis pathway. In certain combinations of PGRs, like 0.4 mgl−1 IAA + 0.4 mgl−1 NAA, co-induction and co-regeneration of different pathways were observed. Investigation of genotype dependencies of different pathways showed that direct pathways are more genotype-dependent, stable, and faster than indirect pathways. This research presents the embryo of cumin as a convenient model material for induction and comparison of different morphogenesis pathways.  相似文献   
3.
Genetic variability for regeneration ability was evaluated by studying direct organogenesis from cotyledons of thirteen genotypes including three cytoplasmic male sterile, three maintenor, three restorer inbred lines, and four F1 hybrids obtained by crosses between some of these inbred lines. The experimental design was a complete randomized block with three replications. A high genetic variability for organogenesis parameters between genotypes was observed in this study. Evidence of cytoplasmic effect and nucleo-cytoplasmic interaction for some of regeneration parameters was observed. The data also showed the importance of additive genetic control for organogenesis parameters in most genotypes. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   
4.
Fourteen recombinant inbred lines of sunflower (Helianthus annuus L.) and their parents (PAC-2 and RHA-266) were tested for their organogenesis ability. Seeds were surface sterilized and germinated on hormone free half strength MS basal medium containing 10 g l-1 sucrose solidified with five different gelling agents: Phytagar (Gibco laboratoires) 3 g l-1, Phytagel (Sigma) 3 g l-1, Agarose (Sigma) 5 g l-1, Arcagel (Sigma) 4 g l-1 and Agar-Agar (Fisher France) 7 g l-1. Cotyledons from 2-day-old seedlings were split in half and the four explants of each seed were cultived in 55 mm diameter petri dishes containing 10 ml of MS medium supplemented with 50 μM KNO3, 1 μM myo-inositol, 5 μM casein hydrolysate, 4.4 μM of BA and 5.4 μM of NAA solidified with the same gelling agents. The experimental design was a randomized complete block with 3 replications. A replicate for each genotype consisted of ten petri dishes containing four explants. The statistical analysis showed significant differences among genotypes and gelling agents. Of the fourteen recombinant inbred lines tested `C93' presented the highest values for all regeneration traits in the five different media and it was better than the best parent. Agarose and Agar-Agar were more better than other gelling agents for shoot induction. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   
5.
6.
Genetic control for two in vitro organogenesis traits, the number of shoots per explant plated (S/E) and the number of shoots per regenerating explant (S/RE), was investigated in 75 recombinant inbred lines (RILs) of sunflower and their two parents (PAC-2 and RHA-266). Genetic variability was observed among the 75 RILs for the organogenesis traits studied. Some RILs presented significant differences when compared with the best parental line (RHA-266). Genetic gain, in terms of the percentage of the best parent, for 32% of the selected RILs was significant. A set of 99RILs from the same cross including the 75 mentioned above was screened with 333 AFLP markers and a linkage map was constructed based on 264 linked loci. Six putative QTLs for the S/RE (tentatively named osr) and seven QTLs for the S/E (ose) trait were detected using composite interval mapping. For each trait, the QTLs explained 52% (ose) and 67% (osr) of the total phenotypic variance. These results suggested that additive gene effects predominate in explaining a large proportion of the observed genetic variation associated with regeneration ability. The coincidental location of QTLs for S/E and S/RE is discussed. Received: 20 September 1999 / Accepted: 16 May 2000  相似文献   
7.
Four PAV-like isolates of barley yellow dwarf virus (BYDV) were identified as causing very severe (RG), severe (2t), moderately severe (3b) and mild symptoms (13t) in barley (Hordeum vulgare) cultivar Plaisant in a growth chamber at 25 days after inoculation. These isolates had different effects on a range of barley genotypes. Cultivar Vixen, which contains the Yd2 resistance gene, and 80-81 BQCB10 were not affected by any isolate. Five other genotypes were significantly affected by at, least one of the isolates. Line Ea52 (which is a mutant of the Japanese cultivar Chikurine Ibaraki) was more susceptible to BYDV-PAV than Chikurin Ibaraki 1. No serological differences were detected between the four isolates using monoclonal or polyclonal antibodies. Virus antigen concentration, estimated by enzyme-linked immunosorbent assay (ELISA), was correlated with the decrease in the shoot fresh weight for all isolates and all genotypes except for Vixen and 80-81BQCB10. In field tests, the severity of symptoms induced by the BYDV-PAV isolates was in accordance with that estimated in the growth chamber. However isolate 2t was more severe on cultivar Vixen and overcame the partial resistance of Chikurin Ibaraki 1 to the three other isolates. The results show that virus antigen concentration not only contributes to characterizing the resistance levels of barley genotypes but also the severity of BYDV-PAV isolates.  相似文献   
8.
9.
The objective of the present research was to map QTLs associated with agronomic traits such as days from sowing to flowering, plant height, yield and leaf-related traits in a population of recombinant inbred lines (RILs) of sunflower (Helianthus annuus). Two field experiments were conducted with well-irrigated and partially irrigated conditions in randomized complete block design with three replications. A map with 304 AFLP and 191 SSR markers with a mean density of 1 marker per 3.7 cM was used to identify QTLs related to the studied traits. The difference among RILs was significant for all studied traits in both conditions. Three to seven QTLs were found for each studied trait in both conditions. The percentage of phenotypic variance (R 2) explained by QTLs ranged from 4 to 49%. Three to six QTLs were found for each yield-related trait in both conditions. The most important QTL for grain yield per plant on linkage group 13 (GYP-P-13-1) under partial-irrigated condition controls 49% of phenotypic variance (R 2). The most important QTL for 1,000-grain weight (TGW-P-11-1) was identified on linkage group 11. Favorable alleles for this QTL come from RHA266. The major QTL for days from sowing to flowering (DSF-P-14-1) were observed on linkage group 14 and explained 38% of the phenotypic variance. The positive alleles for this QTL come from RHA266. The major QTL for HD (HD-P-13-1) was also identified on linkage group 13 and explained 37% of the phenotypic variance. Both parents (PAC2 and RHA266) contributed to QTLs controlling leaf-related traits in both conditions. Common QTL for leaf area at flowering (LAF-P-12-1, LAF-W-12-1) was detected in linkage group 12. The results emphasise the importance of the role of linkage groups 2, 10 and 13 for studied traits. Genomic regions on the linkage groups 9 and 12 are specific for QTLs of leaf-related traits in sunflower.  相似文献   
10.
 Genetic variability for partial resistance to bacterial leaf streak in barley, caused by Xanthomonas campestris pv. hordei, was investigated in 119 doubled-haploid lines (DH) developed by the Hordeum bulbosum method from the F1 progeny of the cross between two cultivars, ‘Morex’ (resistant) and ‘Steptoe’ (susceptible). Two experiments were undertaken in a randomized complete block design with three replicates, in a controlled growth chamber. Twenty seeds per replicate were planted in plastic containers (60×40×8 cm) containing moistened vermiculite. At the two-leaf stage seedlings were inoculated with an Iranian strain of the pathogen. Genetic variability was observed among the 119 DH lines for partial resistance to the disease. Some DH lines were significantly more resistant than ‘Morex’ (resistant parent) to bacterial leaf streak. Genetic gain in percentage of resistant parent for 5% of the selected DH lines was significant (47.70% and 33.72% in the first and the second experiment, respectively). A QTL analysis of bacterial leaf streak resistance showed that three QTLs were detected on chromosomes 3 and 7. Multilocus allelic effects of the three QTLs account for almost 54% of the mean difference between the parents and nearly 30% of the phenotypic variation of the trait in the mean experiment. The resistance locus on chromosome 3, near ABG377, apprears to be a major gene. Received: 15 July 1997 / Accepted: 4 August 1997  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号