首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   0篇
  2022年   2篇
  2014年   1篇
  2013年   1篇
  2011年   3篇
排序方式: 共有7条查询结果,搜索用时 15 毫秒
1
1.
The decanucleotide sequence d(CCGGTACCGG) crystallizes as a four-way junction at low cobalt ion concentrations (i.e., 1 mM). When the cobalt concentration in the crystallization solution is increased to 5 mM, the sequence crystallizes as resolved B-DNA duplexes. Gel retardation studies of the decamer show both a faint slow-moving band and a much thicker fast-moving band at low cobalt ion concentrations, and only the intense fast-moving band at higher ion concentration. Circular dichroism (CD) spectroscopy of the decamer indicates a structural transition as the cobalt ion concentration in the solution is increased, probably from B-type to A-type DNA. These studies revealed that the oligomer sequence has several conformations and structures accessible to it, in a manner dependent on sequence, ion concentration, and DNA concentration.

[Supplementary materials are available for this article. Go to the publisher's online edition of Nucleosides, Nucleotides & Nucleic Acids for the following free supplemental resources(s): Supplementary Figures 1, 2, and 3.]  相似文献   
2.
3.
Arsenical resistance (ars) operons encode genes for arsenic resistance and biotransformation. The majority are composed of individual genes, but fusion of ars genes is not uncommon, although it is not clear if the fused gene products are functional. Here we report identification of a four-gene ars operon from Paracoccus sp. SY that has two arsR-arsC gene fusions. ArsRC1 and ArsRC2 are related proteins that consist of an N-terminal ArsR arsenite (As(III))-responsive repressor with a C-terminal ArsC arsenate reductase. The other two genes in the operon are gapdh and arsJ. GAPDH, glyceraldehyde 3-phosphate dehydrogenase, forms 1-arseno-3-phosphoglycerate (1As3PGA) from 3-phosphoglyceraldehyde and arsenate (As(V)), ArsJ is an efflux permease for 1As3PGA that dissociates into extracellular As(V) and 3-phosphoglycerate. The net effect is As(V) extrusion and resistance. ArsRs are usually selective for As(III) and do not respond to As(V). However, the substrates and products of this operon are pentavalent, which would not be inducers of the operon. We propose that ArsRC fusions overcome this limitation by channelling the ArsC product into the ArsR binding site without diffusion through the cytosol, a de facto mechanism for As(V) induction. This novel mechanism for arsenate sensing can confer an evolutionary advantage for detoxification of inorganic arsenate.  相似文献   
4.
We report the 2.6 Å resolution crystal structure of the tetra-decamer d(CGCGGGTACCCGCG) in the tetragonal space group P43. This sequence contains the KpnI restriction site GGTACC in the centre which is flanked by alternating ‘CG’ sequences, and has a ‘TA’ step at the centre. These are features could favour the left-handed Z type helix. Despite this, overall the molecule has the A form. This is the first tetra-decamer crystallized in the A-DNA conformation, i.e. more than one full turn of the A helix. The crystallographic asymmetric unit consists of one tetra-decamer duplex. The helical twist and slide, as well as the base pair–base pair stacking interactions show alternations at the alternating pyrimidine–purine and purine–pyrimidine base steps. This variation is reminiscent of the dinucleotide repeat in left-handed Z-DNA helices. The crystal packing is unlike other A-DNA crystal structures, with each helix having a large number of contacts of many different types with symmetry-related neighbours.  相似文献   
5.
Fms-like tyrosine kinase-3 (FLT3) is a growth factor receptor normally expressed on hematopoietic progenitor cells. Approximately one third of all patients with AML carry an activating mutation in FLT3 that drives proliferation and survival of the leukemic cells. The most common activating mutation is the so-called internal tandem duplication (ITD), which involves an in-frame duplication of a segment of varying length in the region of the FLT3 gene that encodes the juxtamembrane domain. The pathways downstream of FLT3-ITD are partially known but further knowledge regarding the downstream signal transduction molecules is important in order to develop alternative strategies for pharmacological intervention.In this paper we have studied the role of MEK/ERK5 in FLT3-ITD mediated transformation. We have found that both wild-type FLT3 and FLT3-ITD activate MEK5 leading to the activation of ERK5. By use of the selective inhibitor of MEK5, BIX02188, we have shown that activation of AKT downstream of FLT3 is partially dependent on ERK5. Furthermore, inhibition of MEK5/ERK5 induces apoptosis of both FLT3-ITD transfected Ba/F3 cells as well as the FLT3-ITD carrying leukemic cell lines MV4-11 and MOLM-13. These results suggest that MEK5/ERK5 is important for FLT3-ITD induced hematopoietic transformation and may thus represent an alternative therapeutic target in the treatment of FLT3-ITD positive leukemia.  相似文献   
6.
We report here the crystal structure of the partially self-complementary decameric sequence d(CGGCGGCCGC), which self assembles to form a four-way junction with sticky ends. Each junction binds to four others through Watson–Crick base pairing at the sticky ends to form a rhombic structure. The rhombuses bind to each other and form two dimensional tiles. The tiles stack to form the crystal. The crystal diffracted in the space group P1 to a resolution of 2.5 Å. The junction has the anti-parallel stacked-X conformation like other junction structures, though the formation of the rhombic net noticeably alters the details of the junction geometry.  相似文献   
7.
The ArsA ATPase is the catalytic subunit of the ArsAB As(III) efflux pump. It receives trivalent As(III) from the intracellular metallochaperone ArsD. The interaction of ArsA and ArsD allows for resistance to As(III) at environmental concentrations. A quadruple mutant in the arsD gene encoding a K2A/K37A/K62A/K104A ArsD is unable to interact with ArsA. An error-prone mutagenesis approach was used to generate random mutations in the arsA gene that restored interaction with the quadruple arsD mutant in yeast two-hybrid assays. A number of arsA genes with multiple mutations were isolated. These were analyzed in more detail by separation into single arsA mutants. Three such mutants encoding Q56R, F120I and D137V ArsA were able to restore interaction with the quadruple ArsD mutant in yeast two-hybrid assays. Each of the three single ArsA mutants also interacted with wild type ArsD. Only the Q56R ArsA derivative exhibited significant metalloid-stimulated ATPase activity in vitro. Purified Q56R ArsA was stimulated by wild type ArsD and to a lesser degree by the quadruple ArsD derivative. The F120I and D137V ArsAs did not show metalloid-stimulated ATPase activity. Structural models generated by in silico docking suggest that an electrostatic interface favors reversible interaction between ArsA and ArsD. We predict that mutations in ArsA propagate changes in hydrogen bonding and salt bridges to the ArsA–ArsD interface that affect their interactions.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号