首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
  2013年   1篇
  2012年   1篇
  2004年   1篇
  2003年   1篇
排序方式: 共有4条查询结果,搜索用时 15 毫秒
1
1.
Allosamidin is a strong inhibitor of family 18 chitinases. We previously reported the presence of allosamidin-sensitive and -insensitive chitinases (chitinase S and IS) in the culture filtrate of the allosamidin-producing strain, Streptomyces sp. AJ9463. In this study, we cloned and sequenced the genes encoding the two chitinases, which clarified that chitinase S and IS belong to the family 18 and 19 chitinase, respectively.  相似文献   
2.
Using chemical mutagenesis, mutants of Hansenula polymorpha that were defective in fatty acid synthesis were selected based on their growth requirements on saturated fatty acid mixtures. One mutant (S7) was incapable of synthesizing polyunsaturated fatty acids (PUFA), linoleic and α-linolenic acids. A genetic analysis demonstrated that the S7 strain had a double lesion affecting fatty acid synthesis and Δ12-desaturation. A segregant with a defect in PUFA synthesis (H69-2C) displayed normal growth characteristics in the temperature range of 20–42 °C through a modulation of the cellular fatty acid composition. Compared with the parental strain, this yeast mutant had increased sensitivity at low and high temperatures (15 and 48 °C, respectively) with an increased tolerance to oxidative stress. The responses to ethanol stress were similar for the parental and PUFA-defective strains. Myristic acid was also determined to play an essential role in the cell growth of H. polymorpha. These findings suggest that both the type of cellular fatty acids and the composition of fatty acids might be involved in the stress responsive mechanisms in this industrially important yeast.  相似文献   
3.
Fatty acid elongation defective mutant was isolated from the ethyl methanesulfonate treated Hansenula polymorpha based on the growth ability. Using biochemical and genetic approaches, the mutant was characterized. When compared with the fatty acid phenotype of the parental strain, the differences in profile and content of fatty acids in V1 mutant were found. In this V1 mutant, polyunsaturated fatty acids, linoleic and alpha-linolenic acids, could not be detected with a corresponding increase in the content of mono-unsaturated fatty acids. The ratio of C16/C18 fatty acids revealed that the accumulation of C16 fatty acids was increased significantly. The experiments on fatty acid supplementation indicated that the mutant required C18:0 for the proper growth. The results of genetic complementation with the elongase genes of Saccharomyces cerevisiae confirmed that the lesion was occurred at least in the extension of C16:0 to C18:0 of V1. The H. polymorpha mutant obtained in this work will be used as a useful tool for unraveling the pathway of fatty acid synthesis and the role of fatty acids on biological processes.  相似文献   
4.
This study shows that Rhizopus oryzae is capable of directly utilizing cassava pulp alone to L: -lactic acid in solid state fermentation (SSF). pH control at 6.0 helped prevent end product inhibition. Increasing lactate titer was observed at the higher initial moistened water due to the higher degree of substrate swelling and hydrolysis. With shaking, limited ethanol production but no change in lactate titer was observed. Rigorous shaking gave better oxygen transfer but presumably caused cell damage leading to substrate utilization through the biosynthesis route. Supplementing cassava pulp with nitrogen enhanced growth but not lactate production. Under the optimal conditions, R. oryzae converted the sole cassava pulp into lactic acid at the titer of 206.20?mg per g initial dry pulp. With the help of commercial cellulase and glucoamylase, the dramatically increasing lactate titer of 463.18?mg per g initial dry pulp was achieved via SSF.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号