首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20篇
  免费   0篇
  2022年   2篇
  2020年   1篇
  2019年   2篇
  2018年   1篇
  2017年   1篇
  2014年   3篇
  2013年   1篇
  2012年   2篇
  2011年   2篇
  2007年   1篇
  2006年   2篇
  2005年   2篇
排序方式: 共有20条查询结果,搜索用时 15 毫秒
1.
Rotenone, a commonly used pesticide, is well documented to induce selective degeneration in dopaminergic neurons and motor dysfunction. Such rotenone-induced neurodegenration has been primarily suggested through mitochondria-mediated apoptosis and reactive oxygen species (ROS) generation. But the status of rotenone induced changes in liver, the major metabolic site is poorly investigated. Thus, the present investigation was aimed to study the oxidative stress-induced cytotoxicity and apoptotic cell death in human liver cells-HepG2 receiving experimental exposure of rotenone (12.5–250 μM) for 24 h. Rotenone depicted a dose-dependent cytotoxic response in HepG2 cells. These cytotoxic responses were in concurrence with the markers associated with oxidative stress such as an increase in ROS generation and lipid peroxidation as well as a decrease in the glutathione, catalase, and superoxide dismutase levels. The decrease in mitochondrial membrane potential also confirms the impaired mitochondrial activity. The events of cytotoxicity and oxidative stress were found to be associated with up-regulation in the expressions (mRNA and protein) of pro-apoptotic markers viz., p53, Bax, and caspase-3, and down-regulation of anti-apoptotic marker Bcl-2. The data obtain in this study indicate that rotenone-induced cytotoxicity in HepG2 cells via ROS-induced oxidative stress and mitochondria-mediated apoptosis involving p53, Bax/Bcl-2, and caspase-3.  相似文献   
2.
Role of the executioner caspases during lens development   总被引:2,自引:0,他引:2  
  相似文献   
3.
Z Karim  R Adnan  MS Ansari 《PloS one》2012,7(7):e41422
Chemical synthesis of Ag-NPs was carried out using reduction method. The reduction mechanistic approach of silver ions was found to be a basic clue for the formation of the Ag-NPs. The nanoparticles were characterized by UV-vis, FT-IR and TEM analysis. We had designed some experiments in support of our hypothesis, "low concentrations of novel nanoparticles (silver and gold) increases the activity of plant peroxidases and alter their structure also", we had used Ag-NPs and HRP as models. The immobilization/interaction experiment had demonstrated the specific concentration range of the Ag-NPs and within this range, an increase in HRP activity was reported. At 0.08 mM concentration of Ag-NPs, 50% increase in the activity yield was found. The U.V-vis spectra had demonstrated the increase in the absorbance of HRP within the reported concentration range (0.06-0.12 mM). Above and below this concentration range there was a decrease in the activity of HRP. The results that we had found from the fluorescence spectra were also in favor of our hypothesis. There was a maximum increase in ellipticity and α-helix contents in the presence of 0.08 mM concentration of Ag-NPs, demonstrated by circular dichroism (CD) spectra. Finally, incubation of a plant peroxidase, HRP with Ag-NPs, within the reported concentration range not only enhances the activity but also alter the structure.  相似文献   
4.
The success of Mycobacterium tuberculosis as a pathogen derives from its facile adaptation to the intracellular milieu of human macrophages. To explore this process, we asked whether adaptation also required interference with the metabolic machinery of the host cell. Temporal profiling of the metabolic flux, in cells infected with differently virulent mycobacterial strains, confirmed that this was indeed the case. Subsequent analysis identified the core subset of host reactions that were targeted. It also elucidated that the goal of regulation was to integrate pathways facilitating macrophage survival, with those promoting mycobacterial sustenance. Intriguingly, this synthesis then provided an axis where both host- and pathogen-derived factors converged to define determinants of pathogenicity. Consequently, whereas the requirement for macrophage survival sensitized TB susceptibility to the glycemic status of the individual, mediation by pathogen ensured that the virulence properties of the infecting strain also contributed towards the resulting pathology.  相似文献   
5.
6.
Herein, we studied phorate for its toxicological effects in human lymphocytes. Phorate treatment for 3 h has induced significant increase in the lymphocytic DNA damage. Compared to control, comet data from highest concentration of phorate (1000 µM) showed 8.03-fold increase in the Olive tail moment (OTM). Cytokinesis blocked micronucleus (CBMN) assay revealed 6.4-fold increase in binucleated micronucleated (BNMN) cells following the exposure with phorate (200 µM) for 24 h. The nuclear division index (NDI) in phorate (200 µM) treated cells reduced to 1.8 vis-à-vis control cells showed NDI of 1.94. Comparative to untreated control, 60.43% greater DCF fluorescence was quantitated in lymphocytes treated with phorate (500 µM), affirming reactive oxygen species (ROS) generation and oxidative stress. Flow cytometric data of phorate (200 µM) treated lymphocytes showed 81.77% decline in the fluorescence of rhodamine 123 (Rh123) dye, confirming the perturbation of mitochondrial membrane potential (ΔΨm). Calf thymus DNA (ct-DNA) treated with phorate (1000 µM) exhibited 2.3-fold higher 8-Hydroxy-2′-deoxyguanosine (8-oxodG) DNA adduct formation, signified the oxidative DNA damage. The alkaline unwinding assay revealed 4.0 and 6.5 ct-DNA strand breaks when treated to phorate and phorate-Cu (II) complex. Overall, the data unequivocally suggests the cyto- and genotoxic potential of phorate in human lymphocytes, which may induce comparable toxicological consequences in persons occupationally or non-occupationally exposed to insecticide phorate.  相似文献   
7.
Titanium dioxide nanoparticles (TiO2-NPs) interaction with human serum albumin (HSA) and DNA was studied by UV–visible spectroscopy, spectrofluorescence, circular dichroism (CD), and transmission electron microscopy (TEM) to analyze the binding parameters and protein corona formation. TEM revealed protein corona formation on TiO2-NPs surface due to adsorption of HSA. Intrinsic fluorescence quenching data suggested significant binding of TiO2-NPs (avg. size 14.0 nm) with HSA. The Stern–Volmer constant (Ksv) was determined to be 7.6 × 102 M?1 (r2 = 0.98), whereas the binding constant (Ka) and number of binding sites (n) were assessed to be 5.82 × 102 M?1 and 0.97, respectively. Synchronous fluorescence revealed an apparent decrease in fluorescence intensity with a red shift of 2 nm at Δλ = 15 nm and Δλ = 60 nm. UV–visible analysis also provided the binding constant values for TiO2-NPs–HSA and TiO2-NPs-DNA complexes as 2.8 × 102 M?1 and 5.4 × 103 M?1. The CD data demonstrated loss in α-helicity of HSA and transformation into β-sheet, suggesting structural alterations by TiO2-NPs. The docking analysis of TiO2-NPs with HSA revealed its preferential binding with aromatic and non-aromatic amino acids in subdomain IIA and IB hydrophobic cavity of HSA. Also, the TiO2-NPs docking revealed the selective binding with A-T bases in minor groove of DNA.  相似文献   
8.
Developments in digital imaging and fluorescent microscopy provide a new method and opportunities for quantification of protein expression in human tissue. Archived collections of paraffin-embedded tumors can be used to study the relationship between quantitative differences in protein expression in tumors and patient outcome. In this report we describe the use of a DeltaVision Restoration deconvolution microscope, combined with fluorescent immunohistochemistry, to obtain reproducible and quantitative estimates of protein expression in a formalin-fixed paraffin-embedded tissue. As proof of principle, we used antibodies to the estrogen and progesterone receptors in a hormone receptor-positive breast cancer specimen. We provide guidelines for control of day-to-day variability in camera and microscope performance to ensure that image acquisition leads to reproducible quantitative estimates of protein expression. We show that background autofluorescence related to formalin fixation can be controlled and that for proteins that are expressed in nearly every cell, multiplexing two primary antibodies on the same slide does not significantly affect the results obtained. We demonstrate that for proteins whose expression varies markedly from cell to cell, data reproducibility, as assessed by imaging successive tissue sections, is more difficult to determine.  相似文献   
9.
TiCl4 surface treatment studies of porous electrode structure of TiO2 aggregates synthesized using an acidic precursor and CTAB as a templating agent are carried out in order to understand and improve upon recombination kinetics in the photonanode film matrix, together with enhancing the intrinsic light scattering. The key beneficial features of the photoanode included high surface roughness, necessary for superior dye adsorption, nanocrystallite aggregates leading to diffuse light scattering within the film matrix, and a hierarchical macro‐ and mesopore structure allowing good access of electrolyte to the dye, thereby assisting in dye regeneration (enhanced charge transfer). Pre‐treatment of the TiO2 electrodes reduced recombination at the fluorine‐doped tin oxide (FTO)/electrolyte interface. The post‐treatment study showed enhanced surface roughness through the deposition of a thin overlayer of amorphous TiO2 on the film structure. This led to a notable improvement in both dye adsorption and inherent light scattering effects by the TiO2 aggregates, resulting in enhanced energy harvesting. The thin TiO2 overlayer also acted as a barrier in a core‐shell configuration within the porous TiO2 matrix, and thereby reduced recombination. This allowed the hierarchical macro‐ and mesoporosity of the film matrix to be utilized more effectively for enhanced charge transfer during dye regeneration. Post‐treatment of the aggregated TiO2 matrix resulted in a 36% enhancement in power conversion efficiency from 4.41% of untreated cells to 6.01%.  相似文献   
10.
Protists kill their bacterial prey using toxic metals such as copper. Here we hypothesize that the metalloid arsenic has a similar role. To test this hypothesis, we examined intracellular survival of Escherichia coli (E. coli) in the amoeba Dictyostelium discoideum (D. discoideum). Deletion of the E. coli ars operon led to significantly lower intracellular survival compared to wild type E. coli. This suggests that protists use arsenic to poison bacterial cells in the phagosome, similar to their use of copper. In response to copper and arsenic poisoning by protists, there is selection for acquisition of arsenic and copper resistance genes in the bacterial prey to avoid killing. In agreement with this hypothesis, both copper and arsenic resistance determinants are widespread in many bacterial taxa and environments, and they are often found together on plasmids. A role for heavy metals and arsenic in the ancient predator–prey relationship between protists and bacteria could explain the widespread presence of metal resistance determinants in pristine environments.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号