首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   226篇
  免费   4篇
  国内免费   2篇
  2023年   6篇
  2022年   9篇
  2021年   18篇
  2020年   9篇
  2019年   9篇
  2018年   7篇
  2017年   9篇
  2016年   4篇
  2015年   16篇
  2014年   14篇
  2013年   14篇
  2012年   12篇
  2011年   15篇
  2010年   7篇
  2009年   5篇
  2008年   7篇
  2007年   13篇
  2006年   4篇
  2005年   3篇
  2004年   7篇
  2003年   3篇
  2002年   1篇
  2000年   3篇
  1998年   2篇
  1997年   5篇
  1996年   4篇
  1995年   4篇
  1994年   1篇
  1993年   4篇
  1992年   3篇
  1991年   2篇
  1990年   2篇
  1989年   1篇
  1982年   1篇
  1981年   2篇
  1980年   1篇
  1978年   1篇
  1968年   1篇
  1964年   2篇
  1963年   1篇
排序方式: 共有232条查询结果,搜索用时 15 毫秒
1.
Whereas capsulate strains of Neisseria meningitidis are dependent on pili for adhesion to human endothelial and epithelial cells, strains which lacked assembled pili and were partially capsule-deficient adhered to and invaded human endothelial and epithelial cells if they expressed the Opc protein. Bacteria expressing low or undetectable levels of Opc protein failed to adhere to or invade eukaryotic cells. In addition, the presence of OpaAC751 protein on the surface of bacteria did not increase bacterial interactions with host cells. Association of Opc-expressing bacteria was inhibited by antibodies against Opc. Invasion was dependent on the host-cell cytoskeletal activity and was inhibited by cytochalasin D. In some cells, infected at the apical surface, bacteria emerging from basal surface were detected by electron microscopy. Opc is found in diverse meningococci and may represent a common virulence factor which facilitates adherence and invasion by these bacteria.  相似文献   
2.
Neisseria meningitidis (Nm) isolates from disease or during carriage express, on their outer membranes, one or more of a family of closely related proteins designated Opa proteins. In this study, we have examined the potential rotes of Nm Opa proteins in bacterial attachment and invasion of endothelial as well as epithelial cells and compared the influence of Opa proteins with that of Ope protein, which has been previously shown to increase bacterial interactions with eukaryotic cells. Several variants expressing different Opa proteins (A, B, D) or Opc were selected from a culture of capsule-deficient non-piliated bacteria of strain C751. Although the Opa proteins increased bacterial attachment and invasion of endothelial cells, Opc was the most effective protein in increasing bacterial interactions with these cells. In contrast, attachment to several human epithelial cells was facilitated at least as much by OpaB as Opc protein. OpaA was largely without effect whereas OpaD conferred intermediate attachment. OpaB also increased invasion of epithelial cells; more bacteria were internalized by Chang conjunctival cells compared with Hep-2 larynx carcinoma or A549 lung carcinoma cells. Monoclonal antibody reacting with OpaB inhibited bacterial interactions with the host cells. Opa-mediated interactions were also eliminated or significantly reduced in variants expressing capsule or those with sialylated lipopolysaccharide. These data are consistent with the notion that environmental factors controlling capsule and lipopolysaccharide phenotype may modulate bacterial interactions mediated by these OM proteins. In permissive microenvironments, some Opa proteins may be important in bacterial colonization and translocation in addition to Opc. The data also support the notion that Nm Opa may confer tissue tropism.  相似文献   
3.
A simple, sensitive, accurate and more informative assay for determining the number of modified groups during the course of carboxyl group modification is described. Monomeric carboxymethylcellulase (CMCase) from Aspergillus niger was modified by 1-ethyl-3(3-dimethylaminopropyl)carbodiimide (EDC) in the presence of glycinamide. The different time-course aliquots were subjected to non-denaturing PAGE and the gel stained for CMCase activity. The number of carboxyl groups modified are directly read from the ladder of the enzyme bands developed at given time. This method showed that after 75 min of modification reaction there were five major species of modified CMCases in which 6 to 10 carboxyls were modified.  相似文献   
4.
Neisseria meningitidis pili are filamentous protein structures that are essential adhesins in capsulate bacteria. Pili of adhesion variants of meningococcal strain C311 contain glycosyl residues on pilin (PilE), their major structural subunit. Despite the presence of three potential N -linked glycosylation sites, none appears to be occupied in these pilins. Instead, a novel O -linked trisaccharide substituent, not previously found as a constituent of glycoproteins, is present within a peptide spanning amino acid residues 45 to 73 of the PilE molecule. This structure contains a terminal 1-4-linked digalactose moiety covalently linked to a 2,4-diacetamido-2,4,6-trideoxyhexose sugar which is directly attached to pilin. Pilins derived from galactose epimerase ( galE ) mutants lack the digalactosyl moiety, but retain the diacetamidotrideoxyhexose substitution. Both parental (#3) pilins and those derived from a hyper-adherent variant (#16) contained identical sugar substitutions in this region of pilin, and galE mutants of #3 were similar to the parental phenotype in their adherence to host cells. These studies have confirmed our previous observations that meningococcal pili are glycosylated and provided the first structural evidence for the presence of covalently linked carbohydrate on pili. In addition, they have revealed a completely novel protein/saccharide linkage.  相似文献   
5.
The interplay between four surface-expressed virulence factors of Neisseria meningitidis (pili, Opc, capsule and lipopolysaccharide (LPS)) in host cell adhesion and invasion was examined using derivatives of a serogroup B strain, MC58, created by mutation (capsule, Opc) and selection of variants. To examine the role of Opc and of additional expression of pili, bacteria lacking the expression of Opa proteins were used. The effects of different LPS structures were examined in variants expressing either sialylated (L3 immunotype) or truncated non-sialylated (L8 immuno-type) LPS. Studies showed that (i) pili were essential for meningococcal interactions with host cells in both capsulate and acapsulate bacteria with the sialylated L3 LPS immunotype, (ii) the Opc-mediated invasion of host cells by piliated and non-piliated bacteria was observed only in acapsulate organisms with L8 LPS immunotype, and (iii) expression of pili in Opc-expressing bacteria resulted in increased invasion. Investigations on the mechanisms of cellular invasion indicated that the Opc-mediated invasion was dependent on the presence of serum in the incubation medium and was mediated by serum proteins with arginine-glycine-aspartic acid (RGD) sequence. Cellular invasion in piliated Opc+ phenotype also required bridging molecules containing the RGD recognition sequence and appeared to involve the integrin αvβ3 as a target receptor on endothelial cells. These studies extend the previous observations on variants of a serogroup A strain (C751) and show that Opc mediates cellular invasion in distinct meningococcal strains and provide confirmation of its mechanism of action. This is the first investigation that evaluates, using derivatives of a single strain, the interplay between four meningococcal surface virulence factors in host cell invasion.  相似文献   
6.

BReast CAncer gene 1 (BRCA1)—a tumor suppressor gene plays an important role in the DNA repair mechanism. Several BRCA1 variants perturb its structure and function, including synonymous and nonsynonymous single nucleotide polymorphisms (SNPs). In the present study, we performed in-silico analyses of nonsynonymous SNPs (nsSNPs) of the BRCA1 gene. In total, 122 nsSNPs were retrieved from the NCBI SNP database and in-silico analyses were performed using computational prediction tools: SIFT, PROVEAN, Mutation Taster, PolyPhen-2, MutPred, and ConSurf. Of these tools, SIFT, PROVEAN, and Mutation Taster predicted 61 out of 122 nsSNPs as “damaging”, based on structural homology analysis. PolyPhen-2 classified 22 nsSNPs as “probably damaging”. These nsSNPs were further analyzed by MutPred to predict basic molecular mechanisms of amino acid alteration. ConSurf analysis predicted eleven conserved amino acid residues with structural and functional consequences. We identified five amino acid residues in the RING finger domain (L22, C39, H41, C44, and C47) and two in the BRCT domain (P1771 and I1707) with the potential to deter the BRCA1 protein function. This study provides insights into the effect of nsSNPs and amino acid substitutions in BRCA1.

  相似文献   
7.
Atherosclerosis is a chronic inflammatory disease arising due to an imbalance in lipid metabolism and maladaptive immune response driven by the accumulation of cholesterol-laden macrophages in the artery wall. Interactions between monocytes/macrophages and endothelial cells play an essential role in the pathogenesis of atherosclerosis. In our current study, nitric oxide synthase 1 (NOS1)-derived nitric oxide (NO) has been identified as a regulator of macrophage and endothelial cell interaction. Oxidized LDL (OxLDL) activates NOS1, which results in the expression of CD40 ligand in macrophages. OxLDL-stimulated macrophages produce some soluble factors which increase the CD40 receptor expression in endothelial cells. This increases the interaction between the macrophages and endothelial cells, which leads to an increase in the inflammatory response. Inhibition of NOS1-derived NO might serve as an effective strategy to reduce foam cell formation and limit the extent of atherosclerotic plaque expansion.  相似文献   
8.
Three new phenolic compounds, sorlanin (4-(3-(hydroxymethyl)-5-methoxy-7-phenyl-2,3-dihydrobenzo[b][1,4]dioxin-2-yl)-2-methoxyphenol, 1), sorbanin (2-((3,5-dimethoxy-[1,1′-biphenyl]-4-yl)oxy)-1-(4-hydroxy-3-methoxyphenyl)propane-1,3-diol, 2) and sorbalanin (4-(3-(hydroxymethyl)-5,6-dimethoxy-2,3-dihydrobenzo[b][1,4]dioxino[2,3-g]benzofuran-2-yl)-2-methoxyphenol, 3), together with eight known compounds, polystachyol (4), isolariciresinol (5), dihydrodehydrodiconiferyl alcohol (6), tuberculatin (7), ovafolinin E (8), aucuparin (9), 2′-methoxyaucuparin (10), and tetracosyl-3-(3,4-dihydroxyphenyl)acrylate (11), were isolated from Sorbus lanata. The structures of these phytoconstituents were elucidated through extensive spectroscopic techniques, including UV, IR, 1D and 2D NMR, ESI-MS and HRESI-MS experiments. All the compounds except 9 and 10 were isolated for the first time from the genus Sorbus. The isolated compounds were also tested in DPPH radical scavenging reaction where compounds 6, 7, 10 and 11 showed significant activities with IC50 values of 9.2, 11.7, 23.0 and 33.7 μM, respectively.  相似文献   
9.
Parthenium poses serious threat to modern crop production system and necessitate evaluating control practices for its effective management. Efficacy of different weed control practices for controlling parthenium was explored in conventional and deep tillage systems in the field conditions. Hand hoeing (20 and 35 days after emergence), S-Metolachlor (pre-emergence herbicide), sorghum straw mulch @ 5 tons ha-1 and combination of hand hoeing and sorghum straw mulch (hand hoeing at 20 and straw mulch at 35 days after emergence) were used as weed control practice. Weedy check where no weed control measure was applied was also included in this experiment for comparison. Results concluded that the all weed management treatments significantly reduced parthenium density, its fresh and dry biomass during both the years of study as compared to weedy check. Maximum sunflower achene yield was recorded in hand hoeing (20 and 35 days after emergence) in combination with deep tillage. So, mold bold plough used for the purpose of deep tillage should be encouraged for better control of parthenium and higher achene yield of sunflower crop (3293.3 kg ha-1 in 2017 and 3221.3 kg ha-1 in 2018). Moreover, is also inferred that total dose of herbicide might be reduced by using hoeing and mulching in an integrated way.  相似文献   
10.
Mass spectrometry imaging (MSI) can visualize the composition, abundance, and spatial distribution of molecules in tissues or cells, which has been widely used in the research of life science. Insects, especially the agricultural pests, have received a great deal of interests from the scientists in biodiversity and food security. This review introduces the major characteristics of MSI, summarizes its application to the investigation of insect endogenous metabolites, exogenous metabolites, and the spatiotemporal changes of metabolites between insects and plants, and discusses its shortfalls and perspectives. The significance of these concerns is beneficial for future insect research such as physiology and metabolism.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号