首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   0篇
  2018年   1篇
  2017年   1篇
  2016年   1篇
  2013年   1篇
  2011年   1篇
  2006年   2篇
排序方式: 共有7条查询结果,搜索用时 15 毫秒
1
1.
Tropical rainforests in South‐East Asia have been affected by climatic fluctuations during past glacial eras. To examine how the accompanying changes in land areas and temperature have affected the genetic properties of rainforest trees in the region, we investigated the phylogeographic patterns of a widespread dipterocarp species, Shorea leprosula. Two types of DNA markers were used: expressed sequence tag‐based simple sequence repeats and chloroplast DNA (cpDNA) sequence variations. Both sets of markers revealed clear genetic differentiation between populations in Borneo and those in the Malay Peninsula and Sumatra (Malay/Sumatra). However, in the south‐western part of Borneo, genetic admixture of the lineages was observed in the two marker types. Coalescent simulation based on cpDNA sequence variation suggested that the two lineages arose 0.28–0.09 million years before present and that following their divergence migration from Malay/Sumatra to Borneo strongly exceeded migration in the opposite direction. We conclude that the genetic structure of S. leprosula was largely formed during the middle Pleistocene and was subsequently modified by eastward migration across the subaerially exposed Sunda Shelf.  相似文献   
2.
Selective logging systems have been used to prevent the rapid decline of forest resources in Southeast Asia, but little is known about the impacts of selective logging on the genetic diversity of Southeast Asian rainforests. We evaluated the effects of silvicultural systems with differing cutting rotations and enrichment planting regimes on the genetic diversity of Shorea parvifolia, an abundant and ecologically important tree in Southeast Asian rainforests. Our result showed that in most respects the genetic diversity is not significantly different between primary forest and the other silvicultural systems; however, the proportion of private alleles is significantly different between them. Intensive second-rotation (L3) harvesting of individuals >40 cm in diameter at breast height (dbh) resulted in a sizable reduction in the number of reproductive trees and a dramatic decrease in the numbers of rare and private alleles, suggesting a negative impact on the genetic diversity of the remaining tree population. Enrichment planting with S. parvifolia in the logged forest improved some genetic parameters, significantly increasing the number of rare alleles in L3 in particular. We conclude that the genetic diversity of logged tropical forests gradually decreases depending on logging rotation times, especially with respect to sensitive genetic parameters such as the numbers of rare and private alleles, and that enrichment planting with native dipterocarps can maintain or even increase the genetic diversity of logged tropical forests in Southeast Asia.  相似文献   
3.
In order to construct a molecular phylogeny of Indonesian Dipterocarpoideae (Dipterocarpaceae), PCR-RFLP of the chloroplast regions rbcL, petB, psbA, psaA, and trnL-F was performed with seven restriction enzymes in 129 samples including 58 species from nine genera. In the strict consensus tree with Monotes kerstingii as outgroup Indonesian Dipterocarpaceae were divided into two major clades. One clade (bootstrap value=71) consisted of Upuna, Cotylelobium, Anisoptera, Vatica, Dipterocarpus (tribe Dipterocarpeae, bootstrap value=83) and Dryobalanops (tribe Shoreae, bootstrap value=99) in a basal position. The second clade consisted of Hopea, Parashorea, and Shorea (tribe Shoreae) with 95% bootstrap support. Tribe Dipterocarpeae is monophyletic, tribe Shoreae is polyphyletic since Dryobalanops is sister to tribe Dipterocarpeae. In the neighbour-joining tree the sister group position of Dryobalanops to tribe Dipterocarpeae is not supported by the bootstrap analysis. Alternatively, we used Upuna borneensis as outgroup. The effect of outgroup selection on tree topology, taxonomic classification and the interpretation of character evolution is discussed.  相似文献   
4.
Selective logging is one of several silvicultural practices used in sustainable forest management in the lowland dipterocarp forest in Indonesia. Selecting only trees with diameters >50 cm for logging can reduce the density of reproductive trees, thereby affecting pollen dispersal and influencing the mating system among remaining trees. We evaluated the effect of logging rotations on the mating system, gene flow and genetic diversity in populations of Shorea parvifolia in primary forest, and in first and second rotation forest. Our results revealed that multiple (or at least two) selective logging events with a 30-year logging rotation had a significant impact on the genetic diversity of pollen clouds. However, the average pollen dispersal distance did not differ significantly among the multiple selective logging rotations. The multiple rotations reduced the outcrossing rate and the number effective of pollen donors in the logged forest. Moreover, the number of pollen donors in a plot was affected by the basal area of reproductive trees present. These results suggest that reducing the number of reproductive trees by logging with multiple rotations might increase the bi-parental inbreeding rate due to the reduction in density of reproductive trees in a selectively logged forest. We conclude that multiple rotations with a 30-year cycle of selective logging as currently practiced would reduce the density of reproductive trees, and would not be sustainable in terms of maintaining genetic diversity in tropical forests of Southeast Asia.  相似文献   
5.
The extent of tropical forest has been declining, due to over-exploitation and illegal logging activities. Large quantities of unlawfully extracted timber and other wood products have been exported, mainly to developed countries. As part of the export monitoring effort, we have developed methods for extracting and analyzing DNA from wood products, such as veneers and sawn timbers made from dipterocarps, in order to identify the species from which they originated. We have also developed a chloroplast DNA database for classifying Shorea species, which are both ecologically and commercially important canopy tree species in the forests of Southeast Asia. We are able to determine the candidate species of wood samples, based on DNA sequences and anatomical data. The methods for analyzing DNA from dipterocarp wood products may have strong deterrent effects on international trade of illegitimate dipterocarp products. However, the method for analyzing DNA from wood is not perfect for all wood products and need for more improvement, especially for plywood sample. Consequently, there may be benefits for the conservation of tropical forests in Southeast Asia.  相似文献   
6.
The island of Borneo is the diversity center of the Dipterocarpaceae, the most important family of tropical rainforest trees in Southeast Asia. However, changes in land use and climate have affected dipterocarp distributions on the island, raising concerns about the vulnerability (inter alia) of the endemic riparian species Shorea macrophylla. Thus, to aid conservation efforts, we have investigated the genetic diversity, structure, and demographic history of S. macrophylla. The species’ genetic diversity and structure in Kalimantan (part of Indonesia, covering 75% of the island) were explored by examining genotypes of 377 individuals representing 13 populations in three regions (Northeast, Central, and West Kalimantan) using 14 newly developed microsatellite loci. Higher genetic diversity was found, at all loci, in samples from Northeast Kalimantan than in samples from the other regions. Moderate genetic differentiation between populations was detected (FST 0.093). Bayesian clustering, principal coordinate, and neighbor joining tree analyses of the population structure consistently identified two genetically distinct groups, one in the Northeast and the other in the Central and West regions. The higher diversity of the diverged populations in Northeast Kalimantan indicates that the region may have hosted rainforest refugia during the ice age. Accordingly, analysis using DIY ABC software indicated that the Northeast and Central-West Kalimantan groups diverged 194,000 years ago. We conclude that global climate change during the Pleistocene strongly influenced the genetic diversity and structure of S. macrophylla populations in Kalimantan.  相似文献   
7.
Genetic differentiation was investigated among 54 Indonesian species of Dipterocarpaceae, a dominant tree family in Asian tropical rainforests, using amplified fragment length polymorphism markers. The tree developed from the resultant unweighted pair group method using arithmetic averages clearly separated all investigated dipterocarps into two major groups that corresponded to tribe Dipterocarpeae and tribe Shoreae, respectively. These results are in accordance with the topology of molecular phylogenetic trees derived from PCR–restriction fragment length polymorphism analysis of chloroplast DNA and generally support the traditional taxonomic assessments. The possibility of interspecific hybridization is also discussed.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号