首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   74篇
  免费   1篇
  2023年   1篇
  2022年   1篇
  2019年   4篇
  2016年   1篇
  2014年   2篇
  2013年   6篇
  2012年   12篇
  2011年   6篇
  2010年   3篇
  2009年   2篇
  2008年   11篇
  2007年   6篇
  2006年   3篇
  2005年   9篇
  2004年   4篇
  2002年   2篇
  1998年   1篇
  1996年   1篇
排序方式: 共有75条查询结果,搜索用时 15 毫秒
1.
Sanjit Bagchi 《CMAJ》2007,177(9):1016
  相似文献   
2.
3.
4.
5.
6.
7.
ABSTRACT: BACKGROUND: Understanding protein subcellular localization is a necessary component toward understanding the overall function of a protein. Numerous computational methods have been published over the past decade, with varying degrees of success. Despite the large number of published methods in this area, only a small fraction of them are available for researchers to use in their own studies. Of those that are available, many are limited by predicting only a small number of major organelles in the cell. Additionally, the majority of methods predict only a single location, even though it is known that a large fraction of the proteins in eukaryotic species shuttle between locations to carry out their function. FINDINGS: We present a software package and a web server for predicting subcellular localization of protein sequences based on the ngLOC method. ngLOC is an n-gram-based Bayesian classifier that predicts subcellular localization of proteins both in prokaryotes and eukaryotes. The overall prediction accuracy varies from 89.8% to 91.4% across species. This program can predict 11 distinct locations each in plant and animal species. ngLOC also predicts 4 and 5 distinct locations on gram-positive and gram-negative bacterial datasets, respectively. CONCLUSIONS: ngLOC is a generic method that can be trained by data from a variety of species or classes for predicting protein subcellular localization. The standalone software is freely available for academic use under GNU GPL, and the ngLOC web server is also accessible at http://ngloc.unmc.edu.  相似文献   
8.
The current study was intended to evaluate the hepatoprotective effect of Epicatechin (EC) against radiation-induced oxidative stress, in terms of inflammation and lipid peroxidation. Swiss albino mice were administered with EC (15 mg/kg body weight) for three consecutive days before exposing them to a single dose of 5-Gy (60)Co gamma (γ) irradiation. Mice were necropsied and livers were taken for immunohistochemistry, western blot analysis and biochemical tests for the detection of markers of hepatic oxidative stress. Nuclear translocation of nuclear factor kappa B (NF-κB) and lipid peroxidation were increased whereas the activities of superoxide dismutase (SOD) and catalase (CAT), reduced glutathione (GSH) content and ferric reducing antioxidant power (FRAP) were diminished upon radiation exposure compared to control. Translocation of NF-κB from cytoplasm to nucleus and lipid peroxidation were found to be inhibited whereas an increase in SOD, CAT, GSH and FRAP was observed in the mice treated with EC prior to irradiation. Thus, pre-treatment with EC offers protection against γ-radiation induced hepatic alterations.  相似文献   
9.
10.
Apoptosis has been implicated as a mechanism of loss of muscle cells in normal aging and plays an important role in age-related sarcopenia. To test the hypothesis that caspase 2 and c-Jun NH2-terminal kinase (JNK)-mediated intrinsic pathway signaling contribute to skeletal muscle cell apoptosis in aging, we compared activation of caspase 2 and JNK and the in vivo expression of 4-hydroxynonenal protein adducts (4-HNE), inducible nitric oxide synthase (iNOS), glucose-6-phosphate dehydrogenase (G6PDH), B-cell lymphoma-2 (BCL-2), BAX, and phospho-BCL-2 in gastrocnemius muscles of young (5 months old) and old (25 months old) mice. A distinct age-related increase in 4-HNE and iNOS expression was readily detected in mice. Increased oxidative stress and iNOS induction were further accompanied by a decrease in G6PDH expression, activation of caspase 2 and JNK, and inactivation of BCL-2 through phosphorylation at serine 70, and caspase 9 activation. Regression analysis further revealed that increased muscle cell death in aging was significantly correlated with changes in the levels of these molecules. Taken together, our data indicate that caspase 2 and JNK-mediated intrinsic pathway signaling is one of the mechanisms involved in age-related increase in muscle cell apoptosis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号