首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   137篇
  免费   7篇
  2021年   11篇
  2020年   1篇
  2019年   1篇
  2018年   3篇
  2017年   1篇
  2016年   2篇
  2015年   8篇
  2014年   12篇
  2013年   11篇
  2012年   14篇
  2011年   17篇
  2010年   10篇
  2009年   3篇
  2008年   11篇
  2007年   10篇
  2006年   7篇
  2005年   7篇
  2004年   6篇
  2003年   3篇
  2002年   2篇
  2001年   1篇
  1984年   2篇
  1983年   1篇
排序方式: 共有144条查询结果,搜索用时 31 毫秒
1.
Cynaropicrin, 11βH-11,13-dihydrodesacylcynaropicrin, aguerins A and B, isoamberboin and the new guaianolides saussureolide and 11βH-11,13-dihydrodesacylcynaropicrin 8-β-d-glucoside were isolated from Saussurea affinis.  相似文献   
2.
3.

Background

Coronary Artery Disease (CAD) is clearly a multifactorial disease that develops from childhood and ultimately leads to death. Several reports revealed having a First Degree Relatives (FDRS) with premature CAD is a significant autonomous risk factor for CAD development. C - reactive protein (CRP) is a member of the pentraxin family and is the most widely studied proinflammatory biomarker. IL-18 is a pleiotrophic and proinflammatory cytokine which is produced mainly by macrophages and plays an important role in the inflammatory cascade.

Methods and Results

Hs-CRP levels were estimated by ELISA and Genotyping of IL-18 gene variant located on promoter -137 (G/C) by Allele specific PCR in blood samples of 300 CAD patients and 300 controls and 100 FDRS. Promoter Binding sites and Protein interacting partners were identified by Alibaba 2.1 and Genemania online tools respectively. Hs-CRP levels were significantly high in CAD patients followed by FDRS when compared to controls. In IL-18 -137 (G/C) polymorphism homozygous GG is significantly associated with occurrence of CAD and Hs-CRP levels were significantly higher in GG genotype subjects when compared to GC and CC. IL-18 was found to be interacting with 100 protein interactants.

Conclusion

Our results indicate that Hs-CRP levels and IL-18-137(G/C) polymorphism may help to identify risk of future events of CAD in asymptomatic healthy FDRS.  相似文献   
4.
Sardar PS  Maity SS  Das L  Ghosh S 《Biochemistry》2007,46(50):14544-14556
Tubulin, a heterodimeric (alphabeta) protein, the main constituent of microtubules, binds efficiently with colchicine (consisting of a trimethoxybenzene ring, a seven-member ring and methoxy tropone moiety) and its analogues, viz., demecolcine and AC [2-methoxy-5-(2',3',4'-trimethoxyphenyl)tropone]. Tubulin contains eight tryptophan (Trp) residues at A21, A346, A388, A407, B21, B103, B346, and B407 in the two subunits. The role of these eight Trp residues in this interaction and also their perturbation due to binding have been explored via time-resolved fluorescence at room temperature and low-temperature (77 K) phosphorescence in a suitable cryosolvent. Both the time-resolved fluorescence data and 77 K phosphorescence spectra indicate that the emitting residues move toward a more hydrophobic and less polar environment after complex formation. The environment of emitting Trps in the complex also becomes slightly more heterogeneous. Our analysis using the experimental results, the calculation of the accessible surface area (ASA) of all the Trps in the wild type and tubulin-colchicine complex [Ravelli, R. B. G., et al. (2004) Nature 428, 198-202], the distance of the Trp residues from the different moieties of the colchicine molecule, the knowledge of the nature of the immediate residues (<5 A) present near each Trp residue, and the calculation of the intramolecular Trp-Trp energy transfer efficiencies indicate that Trp A346, Trp A407, Trp B21, and Trp B407 are the major contributors to the emission in the free protein, while Trp B21 and Trp B103 are mainly responsible for the emission of the complexes. A comparative account of the photophysical aspects of the drug molecules bound to protein in aqueous buffer and in buffer containing 40% ethylene glycol has been presented. The quantum yield and average lifetime of fluorescence in tubulin and its complexes with colchicine are used to predict the possible donors and the energy transfer (ET) efficiency in the ET process from Trps to colchicine in the complex. This study is a unique attempt to identify the Trp residues contributing to the emission in the free protein and in a complex of a multi-Trp protein with a drug molecule without performing the mutation of the protein.  相似文献   
5.
In this study, we show that extracts and a purified compound of Warburgia salutaris exhibit anti-mycobacterial activity against Mycobacterium tuberculosis H37Rv and Mycobacterium bovis BCG Pasteur. The extracts did not inhibit growth of Escherichia coli and were not toxic to cultured mammalian macrophage cells at the concentrations at which anti-mycobacterial activity was observed. The extract and pure compound inhibited pure recombinant arylamine N-acetyltransferase (NAT), an enzyme involved in mycobacterial cell wall lipid synthesis. Moreover, neither extract nor pure compound inhibited growth of a strain of M. bovis BCG in which nat has been deleted suggesting that NAT may indeed be a target within the mycobacterial cell. The purified compound is a novel drimane sesquiterpenoid lactone, 11alpha-hydroxycinnamosmolide. These studies show that W. salutaris is a useful source of anti-tubercular compounds for further analysis and supports the hypothesis of a link between NAT inhibition and anti-mycobacterial activity.  相似文献   
6.
Mycobacterium?tuberculosis, the most successful bacterial pathogen, causes tuberculosis, a disease that still causes more than 2 million deaths per year. Arylamine N-acetyltransferase is an enzyme that is conserved in most Mycobacterium spp. The nat gene belongs to an operon that is important for the intracellular survival of M. tuberculosis within macrophages. The nat operon in Mycobacterium smegmatis and other fast-growing mycobacterial species has a unique organization containing genes with uncharacterized function. Here, we describe the biochemical, biophysical and structural characterization of the MSMEG_0308 gene product (MS0308) of the M. smegmatis nat operon. While characterizing the function of MS0308, we validated the oxidoreductase property; however, we found that the enzyme was not utilizing dihydrofolate as its substrate, hence we first report that MS0308 is not a dihydrofolate reductase, as annotated in the genome. The structure of this oxidoreductase was solved at 2.0 ? in complex with the cofactor NADPH and has revealed the hydrophobic pocket where the endogenous substrate binds.  相似文献   
7.
8.
Human NEIL2, one of five oxidized base-specific DNA glycosylases, is unique in preferentially repairing oxidative damage in transcribed genes. Here we show that depletion of NEIL2 causes a 6-7-fold increase in spontaneous mutation frequency in the HPRT gene of the V79 Chinese hamster lung cell line. This prompted us to screen for NEIL2 variants in lung cancer patients' genomic DNA. We identified several polymorphic variants, among which R103Q and R257L were frequently observed in lung cancer patients. We then characterized these variants biochemically, and observed a modest decrease in DNA glycosylase activity relative to the wild type (WT) only with the R257L mutant protein. However, in reconstituted repair assays containing WT NEIL2 or its R257L and R103Q variants together with other DNA base excision repair (BER) proteins (PNKP, Polβ, Lig IIIα and XRCC1) or using NEIL2-FLAG immunocomplexes, an ~5-fold decrease in repair was observed with the R257L variant compared to WT or R103Q NEIL2, apparently due to the R257L mutant's lower affinity for other repair proteins, particularly Polβ. Notably, increased endogenous DNA damage was observed in NEIL2 variant (R257L)-expressing cells relative to WT cells. Taken together, our results suggest that the decreased DNA repair capacity of the R257L variant can induce mutations that lead to lung cancer development.  相似文献   
9.
Molecular mechanistic model of plant heavy metal tolerance   总被引:2,自引:0,他引:2  
Thapa G  Sadhukhan A  Panda SK  Sahoo L 《Biometals》2012,25(3):489-505
  相似文献   
10.
The present investigation was undertaken to verify whether mitochondria play a significant role in aluminium (Al) toxicity, using the mitochondria isolated from tobacco cells (Nicotiana tabacum, non-chlorophyllic cell line SL) under Al stress. An inhibition of respiration was observed in terms of state-III, state-IV, succinate-dependent, alternative oxidase (AOX)-pathway capacity and cytochrome (CYT)-pathway capacity, respectively, in the mitochondria isolated from tobacco cells subjected to Al stress for 18 h. In accordance with the respiratory inhibition, the mitochondrial ATP content showed a significant decrease under Al treatment. An enhancement of reactive oxygen species (ROS) production under state-III respiration was observed in the mitochondria isolated from Al-treated cells, which would create an oxidative stress situation. The opening of mitochondrial permeability transition pore (MPTP) was seen more extensively in mitochondria isolated from Al-treated cells than in those isolated from control cells. This was Ca(2+) dependent and well modulated by dithioerythritol (DTE) and Pi, but insensitive to cyclosporine A (CsA). The collapse of inner mitochondrial membrane potential (DeltaPsi(m)) was also observed with a release of cytochrome c from mitochondria. A great decrease in the ATP content was also seen under Al stress. Transmission electron microscopy analysis of Al-treated cells also corroborated our biochemical data with distortion in membrane architecture in mitochondria. TUNEL-positive nuclei in Al-treated cells strongly indicated the occurrence of nuclear fragmentation. From the above study, it was concluded that Al toxicity affects severely the mitochondrial respiratory functions and alters the redox status studied in vitro and also the internal structure, which seems to cause finally cell death in tobacco cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号