首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15篇
  免费   0篇
  2022年   1篇
  2021年   1篇
  2020年   1篇
  2019年   3篇
  2018年   2篇
  2017年   1篇
  2015年   1篇
  2014年   1篇
  2013年   1篇
  2012年   1篇
  2010年   1篇
  2008年   1篇
排序方式: 共有15条查询结果,搜索用时 15 毫秒
1.
Terminal deoxynucleotidyl transferase (TdT) deoxyuridine triphosphate (dUTP) nick end labeling (TUNEL) is the method of using the TdT enzyme to covalently attach a tagged form of dUTP to 3’ ends of double- and single-stranded DNA breaks in cells. It is a reliable and useful method to detect DNA damage and cell death in situ. This video describes dissection, tissue processing, sectioning, and fluorescence-based TUNEL labeling of mouse skeletal muscle. It also describes a method of semi-automated TUNEL signal quantitation. Inherent normal tissue features and tissue processing conditions affect the ability of the TdT enzyme to efficiently label DNA. Tissue processing may also add undesirable autofluorescence that will interfere with TUNEL signal detection. Therefore, it is important to empirically determine tissue processing and TUNEL labeling methods that will yield the optimal signal-to-noise ratio for subsequent quantitation. The fluorescence-based assay described here provides a way to exclude autofluorescent signal by digital channel subtraction. The TUNEL assay, used with appropriate tissue processing techniques and controls, is a relatively fast, reproducible, quantitative method for detecting apoptosis in tissue. It can be used to confirm DNA damage and apoptosis as pathological mechanisms, to identify affected cell types, and to assess the efficacy of therapeutic treatments in vivo.  相似文献   
2.
3.
The usage of invasive tagging methods to assess lizard populations has often been criticised, due to the potential negative effects of marking, which possibly cause increased mortality or altered behaviour. The development of safe, less invasive techniques is essential for improved ecological study and conservation of lizard populations. In this study, we describe a photographic capture-recapture (CR) technique for estimating Draco dussumieri (Agamidae) populations. We used photographs of the ventral surface of the patagium to identify individuals. To establish that the naturally occurring blotches remained constant through time, we compared capture and recapture photographs of 45 pen-marked individuals after a 30 day interval. No changes in blotches were observed and individual lizards could be identified with 100% accuracy. The population density of D. dussumieri in a two hectare areca-nut plantation was estimated using the CR technique with ten sampling occasions over a ten day period. The resulting recapture histories for 24 individuals were analysed using population models in the program CAPTURE. All models indicated that nearly all individuals were captured. The estimated probability for capturing D. dussumieri on at least one occasion was 0.92 and the estimated population density was 13±1.65 lizards/ha. Our results demonstrate the potential for applying CR to population studies in gliding lizards (Draco spp.) and other species with distinctive markings.  相似文献   
4.
5.
Nayak S  Salim S  Luan D  Zai M  Varner JD 《PloS one》2008,3(4):e2016
Robustness, a long-recognized property of living systems, allows function in the face of uncertainty while fragility, i.e., extreme sensitivity, can potentially lead to catastrophic failure following seemingly innocuous perturbations. Carlson and Doyle hypothesized that highly-evolved networks, e.g., those involved in cell-cycle regulation, can be resistant to some perturbations while highly sensitive to others. The "robust yet fragile" duality of networks has been termed Highly Optimized Tolerance (HOT) and has been the basis of new lines of inquiry in computational and experimental biology. In this study, we tested the working hypothesis that cell-cycle control architectures obey the HOT paradigm. Three cell-cycle models were analyzed using monte-carlo sensitivity analysis. Overall state sensitivity coefficients, which quantify the robustness or fragility of a given mechanism, were calculated using a monte-carlo strategy with three different numerical techniques along with multiple parameter perturbation strategies to control for possible numerical and sampling artifacts. Approximately 65% of the mechanisms in the G1/S restriction point were responsible for 95% of the sensitivity, conversely, the G2-DNA damage checkpoint showed a much stronger dependence on a few mechanisms; approximately 32% or 13 of 40 mechanisms accounted for 95% of the sensitivity. Our analysis predicted that CDC25 and cyclin E mechanisms were strongly implicated in G1/S malfunctions, while fragility in the G2/M checkpoint was predicted to be associated with the regulation of the cyclin B-CDK1 complex. Analysis of a third model containing both G1/S and G2/M checkpoint logic, predicted in addition to mechanisms already mentioned, that translation and programmed proteolysis were also key fragile subsystems. Comparison of the predicted fragile mechanisms with literature and current preclinical and clinical trials suggested a strong correlation between efficacy and fragility. Thus, when taken together, these results support the working hypothesis that cell-cycle control architectures are HOT networks and establish the mathematical estimation and subsequent therapeutic exploitation of fragile mechanisms as a novel strategy for anti-cancer lead generation.  相似文献   
6.
Androgen ablation therapy is currently the primary treatment for metastatic prostate cancer. Unfortunately, in nearly all cases, androgen ablation fails to permanently arrest cancer progression. As androgens like testosterone are withdrawn, prostate cancer cells lose their androgen sensitivity and begin to proliferate without hormone growth factors. In this study, we constructed and analyzed a mathematical model of the integration between hormone growth factor signaling, androgen receptor activation, and the expression of cyclin D and Prostate-Specific Antigen in human LNCaP prostate adenocarcinoma cells. The objective of the study was to investigate which signaling systems were important in the loss of androgen dependence. The model was formulated as a set of ordinary differential equations which described 212 species and 384 interactions, including both the mRNA and protein levels for key species. An ensemble approach was chosen to constrain model parameters and to estimate the impact of parametric uncertainty on model predictions. Model parameters were identified using 14 steady-state and dynamic LNCaP data sets taken from literature sources. Alterations in the rate of Prostatic Acid Phosphatase expression was sufficient to capture varying levels of androgen dependence. Analysis of the model provided insight into the importance of network components as a function of androgen dependence. The importance of androgen receptor availability and the MAPK/Akt signaling axes was independent of androgen status. Interestingly, androgen receptor availability was important even in androgen-independent LNCaP cells. Translation became progressively more important in androgen-independent LNCaP cells. Further analysis suggested a positive synergy between the MAPK and Akt signaling axes and the translation of key proliferative markers like cyclin D in androgen-independent cells. Taken together, the results support the targeting of both the Akt and MAPK pathways. Moreover, the analysis suggested that direct targeting of the translational machinery, specifically eIF4E, could be efficacious in androgen-independent prostate cancers.  相似文献   
7.
The search for potential antibody-based diagnostics, vaccines, and therapeutics for pandemic severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has focused almost exclusively on the spike (S) and nucleocapsid (N) proteins. Coronavirus membrane (M), ORF3a, and ORF8 proteins are humoral immunogens in other coronaviruses (CoVs) but remain largely uninvestigated for SARS-CoV-2. Here, we use ultradense peptide microarray mapping to show that SARS-CoV-2 infection induces robust antibody responses to epitopes throughout the SARS-CoV-2 proteome, particularly in M, in which 1 epitope achieved excellent diagnostic accuracy. We map 79 B cell epitopes throughout the SARS-CoV-2 proteome and demonstrate that antibodies that develop in response to SARS-CoV-2 infection bind homologous peptide sequences in the 6 other known human CoVs. We also confirm reactivity against 4 of our top-ranking epitopes by enzyme-linked immunosorbent assay (ELISA). Illness severity correlated with increased reactivity to 9 SARS-CoV-2 epitopes in S, M, N, and ORF3a in our population. Our results demonstrate previously unknown, highly reactive B cell epitopes throughout the full proteome of SARS-CoV-2 and other CoV proteins.

Profiling of antibody binding from naïve and COVID-19 convalescent human sera to the entire proteome of SARS-CoV-2 and other human, bat and pangolin coronaviruses identifies 79 B cell epitopes throughout the SARS-CoV-2 proteome, finding that the most sensitive and specific binding occurred in the membrane (M) protein, and revealing cross-reactivity patterns.  相似文献   
8.
CXCR4 and its cognate ligand CXCL12 has been linked to various pathways such as cancer metastasis, inflammation, HIV-1 proliferation, and auto-immune diseases. Small molecules have shown potential as CXCR4 inhibitors and modulators, and therefore can mitigate diseases related to the CXCR4-CXCL12 pathway. We have designed and synthesized a series of 2,5-diamino and 2,5-dianilinomethyl pyridine derivatives as potential CXCR4 antagonists. Thirteen compounds have an effective concentration (EC) of 100?nM or less in a binding affinity assay and nine of these have at least 75% inhibition of invasion in Matrigel binding assay. Compounds 3l, 7f, 7j, and 7p show a minimal reduction in inflammation when carrageenan paw edema test is conducted. Overall, these compounds show potential as CXCR4 antagonist.  相似文献   
9.
Curcumin, the main molecular ingredient of the turmeric spice, has been reported to exhibit therapeutic properties for varied diseases and pathological conditions. While curcumin appears to trigger multiple signaling pathways, the precise mechanisms accounting for its therapeutic activity have not been deciphered. Here we show that curcumin exhibits significant interactions with cardiolipin (CL), a lipid exclusively residing in the mitochondrial membrane. Specifically, we found that curcumin affected the structures and dynamics of CL-containing biomimetic and biological mitochondrial membranes. Application of several biophysical techniques reveals the CL-promoted association and internalization of curcumin into lipid bilayers. In parallel, curcumin association with CL containing bilayers increased their fluidity and reduced lipid ordering. These findings suggest that membrane modifications mediated by CL interactions may play a role in the therapeutic functions of curcumin, and that the inner mitochondrial membrane in general might constitute a potential drug target.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号