首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   104篇
  免费   14篇
  2021年   1篇
  2019年   2篇
  2017年   1篇
  2016年   4篇
  2015年   9篇
  2014年   5篇
  2013年   2篇
  2012年   1篇
  2011年   5篇
  2010年   6篇
  2009年   5篇
  2008年   2篇
  2007年   3篇
  2006年   2篇
  2005年   4篇
  2004年   4篇
  2003年   4篇
  2002年   2篇
  2001年   3篇
  2000年   4篇
  1999年   2篇
  1998年   6篇
  1997年   2篇
  1996年   1篇
  1995年   3篇
  1994年   1篇
  1993年   1篇
  1992年   9篇
  1991年   5篇
  1990年   6篇
  1989年   3篇
  1988年   1篇
  1981年   3篇
  1980年   1篇
  1979年   1篇
  1977年   2篇
  1976年   1篇
  1968年   1篇
排序方式: 共有118条查询结果,搜索用时 15 毫秒
1.
Protein kinase cascades in meiotic and mitotic cell cycle control   总被引:24,自引:0,他引:24  
Eukaryotic cell cycle progression during meiosis and mitosis is extensively regulated by reversible protein phosphorylation. Many cell surface receptors for mitogens are ligand-stimulated protein-tyrosine kinases that control the activation of a network of cytoplasmic and nuclear protein-serine (threonine) kinases. Over 30 plasma membrane associated protein-tyrosine kinases are encoded by proto-oncogenes, i.e., genes that have the potential to facilitate cancer when disregulated. Proteins such as ribosomal protein S6, microtubule-associated protein-2, myelin basic protein, and casein have been used to detect intracellular protein-serine (threonine) kinases that are activated further downstream in growth factor signalling transduction cascades. Genetic analysis of yeast cell division control (cdc) mutants has revealed another 20 or so protein-serine (threonine) kinases. One of these, specified by the cdc-2 gene in Schizosaccharomyces pombe, has homologs that are stimulated during M phase in maturing sea star and frog oocytes and mammalian somatic cells. Furthermore, during meiotic maturation in these echinoderm and amphibian oocytes, this is followed by activation of many of the same protein-serine (threonine) kinases that are stimulated when quiescent mammalian somatic cells are prompted with mitogens to traverse from G0 to G1 phase. These findings imply that a similar protein kinase cascade may oversee progression at multiple points in the cell cycle.  相似文献   
2.
We have examined the phylogenetic distribution of two t-specific markers among representatives of various taxa belonging to the genus Mus. The centromeric TCP-1a marker (a testicular protein variant specific for all t-haplotypes so far studied) has also been apparently detected in several non-t representatives of the Mus IVA, Mus IVB, and probably M. cervicolor species. By contrast, a t-specific restriction- fragment-length polymorphism allele (RFLP) of the telomeric alpha- globin pseudogene DNA marker alpha-psi-4 was found only in animals belonging to the M. musculus-complex species either bearing genuine t- haplotypes or, like the M. m. bactrianus specimen studied here, likely to do so. This t-specific alpha-psi-4 RFLP allele was found to be as divergent from the RFLP alleles of the latter, non-t, taxonomical groups as it is from Mus 4A, Mus 4B, or M. spretus ones. These results suggest the presence of t-haplotypes and of t-specific markers in populations other than those belonging to the M. m. domesticus and M. m. musculus subspecies, implying a possible origin for t-haplotypes prior to the radiation of the most recent offshoot of the Mus genus (i.e., the spretus/domesticus divergence), some 1-3 Myr ago.   相似文献   
3.
A synthetic peptide modeled after the major threonine (T669) phosphorylation site of the epidermal growth factor (EGF) receptor was an efficient substrate (apparent Km approximately 0.45 mM) for phosphorylation by purified p44mpk, a MAP kinase from sea star oocytes. The peptide was also phosphorylated by a related human MAP kinase, which was identified by immunological criteria as p42mapk. Within 5 min of treatment of human cervical carcinoma A431 cells with EGF or phorbol myristate acetate (PMA), a greater than 3-fold activation of p42mapk was measured. However, Mono Q chromatography of A431 cells extracts afforded the resolution of at least three additional T669 peptide kinases, some of which may be new members of the MAP kinase family. One of these (peak I), which weakly adsorbed to Mono Q, phosphorylated myelin basic protein (MBP) and other MAP kinase substrates, immunoreacted as a 42 kDa protein on Western blots with four different MAP kinase antibodies, and behaved as a approximately 45 kDa protein upon Superose 6 gel filtration. Another T669 peptide kinase (peak IV), which bound more tightly to Mono Q than p42mapk (peak II), exhibited a nearly identical substrate specificity profile to that of p42mapk, but it immunoreacted as a 40 kDa protein only with anti-p44mpk antibody on Western blots, and eluted from Superose 6 in a high molecular mass complex of greater than 400 kDa. By immunological criteria, the T669 peptide kinase in Mono Q peak III was tentatively identified as an active form of p34cdc2 associated with cyclin A. The Mono Q peaks III and IV kinases were modestly stimulated following either EGF or PMA treatments of A431 cells, and they exhibited a greater T669 peptide/MBP ratio than p42mapk. These findings indicated that multiple proline-directed kinases may mediate phosphorylation of the EGF receptor.  相似文献   
4.
Motile extracts have been prepared from Dictyostelium discoideum by homogenization and differential centrifugation at 4 degrees C in a stabilization solution (60). These extracts gelled on warming to 25 degrees Celsius and contracted in response to micromolar Ca++ or a pH in excess of 7.0. Optimal gelation occurred in a solution containing 2.5 mM ethylene glycol-bis (β-aminoethyl ether)N,N,N',N'-tetraacetate (EGTA), 2.5 mM piperazine-N-N'-bis [2-ethane sulfonic acid] (PIPES), 1 mM MgC1(2), 1 mM ATP, and 20 mM KCI at ph 7.0 (relaxation solution), while micromolar levels of Ca++ inhibited gelation. Conditions that solated the gel elicited contraction of extracts containing myosin. This was true regardless of whether chemical (micromolar Ca++, pH >7.0, cytochalasin B, elevated concentrations of KCI, MgC1(2), and sucrose) or physical (pressure, mechanical stress, and cold) means were used to induce solation. Myosin was definitely required for contraction. During Ca++-or pH-elicited contraction: (a) actin, myosin, and a 95,000-dalton polypeptide were concentrated in the contracted extract; (b) the gelation activity was recovered in the material sqeezed out the contracting extract;(c) electron microscopy demonstrated that the number of free, recognizable F-actin filaments increased; (d) the actomyosin MgATPase activity was stimulated by 4- to 10-fold. In the absense of myosin the Dictyostelium extract did not contract, while gelation proceeded normally. During solation of the gel in the absense of myosin: (a) electron microscopy demonstrated that the number of free, recognizable F- actin filaments increased; (b) solation-dependent contraction of the extract and the Ca++-stimulated MgATPase activity were reconstituted by adding puried Dictyostelium myosin. Actin purified from the Dictyostelium extract did not gel (at 2 mg/ml), while low concentrations of actin (0.7-2 mg/ml) that contained several contaminating components underwent rapid Ca++ regulated gelation. These results indicated : (a) gelation in Dictyostelium extracts involves a specific Ca++-sensitive interaction between actin and several other components; (b) myosin is an absolute requirement for contraction of the extract; (c) actin-myosin interactions capable of producing force for movement are prevented in the gel, while solation of the gel by either physical or chemical means results in the release of F-actin capable of interaction with myosin and subsequent contraction. The effectiveness of physical agents in producting contraction suggests that the regulation of contraction by the gel is structural in nature.  相似文献   
5.
Mitogen-activated protein kinase (p42mapk) becomes transiently activated after treatment of serum-starved murine Swiss 3T3 cells or EL4 thymocytes with a diversity of mitogens. Similarly, a meiosis-activated protein kinase (p44mpk) becomes stimulated during maturation of sea star oocytes induced by 1-methyladenine. Both p42mapk and p44mpk have been identified as protein-serine/threonine kinases that are activated as a consequence of their phosphorylation. Because homologous protein kinases may play essential roles in both mitogenesis and oogenesis, we have compared in detail the biochemical properties of these two kinases. We find that these kinases are highly related based on their in vitro substrate specificities, sensitivity to inhibitors, and immunological cross-reactivity. However, they differ in apparent molecular weight and can be separated chromatographically, indicating that the two enzymes are distinct. Furthermore, in the course of this investigation, we have identified a 44-kDa protein kinase in mitogen-stimulated Swiss mouse 3T3 cells and EL4 thymocytes that co-purifies with p44mpk and thus appears to be a closer homolog of the sea star enzyme. Analysis of these protein kinases clarifies the relationships between a set of tyrosine-phosphorylated 41-45-kDa proteins present in mitogen-stimulated cells (Martinez, R., Nakamura., K. D., and Weber, M. J. (1982) Mol. Cell. Biol. 2, 653-655; Cooper, J. A., and Hunter, T. (1984) Mol. Cell. Biol. 4, 30-37), two myelin basic protein kinases identified in epidermal growth factor-treated Swiss mouse 3T3 cells (Ahn, N. G., Weiel, J. E., Chan, C. P., and Krebs, E. G. (1990) J. Biol. Chem. 265, 11487-11494), and p42mapk. Our work points to the existence of a group of related serine/threonine protein kinases, regulated by tyrosine phosphorylation and functioning at different stages of the cell cycle.  相似文献   
6.
Casein kinase 2 (CK2) is a ubiquitous, multifunctional protein-seryl/threonyl kinase that has been implicated in cellular regulation. Synthetic peptides were patterned after three highly conserved regions in CK2: the N terminus (CK2-NT); the lysine-rich, kinase subdomain III segment (CK2-III) (nomenclature of Hanks et al. (Hanks, S. K., Quinn, A. M., and Hunter, T. (1988) Science 241, 42-52)); and a 10-residue segment located near kinase subdomain X that is shared between CK2 and p34cdc2 (CK2/cdc2). The CK2-III and CK2/cdc2 peptides markedly stimulated the autophosphorylation of the alpha- and alpha'-subunits of purified CK2 from sea star oocytes, and they elicited up to 2-fold increases in its casein or phosvitin phosphotransferase activity. These peptides completely reversed nearly total inhibition of CK2 phosphotransferase activity toward itself, casein, and phosvitin by either heparin or poly(Glu,Tyr; 4:1), whereas CK2-NT was ineffective. Elution of CK2 from heparin-agarose with the CK2-III peptide indicated that this region of CK2 might mediate heparin binding to CK2. Affinity-purified rabbit polyclonal antibodies developed against both CK2-III and CK2/cdc2, but not CK2-NT, also produced up to 1.8-fold enhancements of the casein and phosvitin phosphotransferase activities of purified CK2. All three of the antipeptide antibody preparations immunoreacted with the alpha- and alpha'-subunits of CK2 on Western blots. These studies indicate that kinase subdomains III and X are involved in the modulation of CK2 phosphotransferase activity.  相似文献   
7.
This study characterizes the insulin-activated serine/threonine protein kinases in H4 hepatoma cells active on a 37-residue synthetic peptide (called the SKAIPS peptide) corresponding to a putative autoinhibitory domain in the carboxyl-terminal tail of the p70 S6 kinase as well as on recombinant p70 S6 kinase. Three peaks of insulin-stimulated protein kinase active on both these substrates are identified as two (possibly three) isoforms of the 40-45-kDa erk/microtubule-associated protein (MAP)-2 kinase family and a 150-kDa form of cdc2. Although distinguishable in their substrate specificity, these protein kinases together with the p54 MAP-2 kinase share a major common specificity determinant reflected in the SKAIPS peptide: the requirement for a proline residue immediately carboxyl-terminal to the site of Ser/Thr phosphorylation. In addition, however, at least one peak of insulin-stimulated protein kinase active on recombinant p70, but not on the SKAIPS peptide, is present although not yet identified. MFP/cdc2 phosphorylates both rat liver p70 S6 kinase and recombinant p70 S6 kinase exclusively at a set of Ser/Thr residues within the putative autoinhibitory (SKAIPS peptide) domain. erk/MAP kinase does not phosphorylate rat liver p70 S6 kinase, but readily phosphorylates recombinant p70 S6 kinase at sites both within and in addition to those encompassed by the SKAIPS peptide sequences. Although the tryptic 32P-peptides bearing the cdc2 and erk/MAP kinase phosphorylation sites co-migrate with a subset of the sites phosphorylated in situ in insulin-stimulated cells, phosphorylation of the p70 S6 kinase by these proline-directed protein kinases in vitro does not reproducibly activate p70 S6 kinase activity. Thus, one or more erk/MAP kinases and cdc2 are likely to participate in the insulin-induced phosphorylation of the p70 S6 kinase. In addition to these kinases, however, phosphorylation of the p70 S6 kinase by other as yet unidentified protein kinases is necessary to recapitulate the multisite phosphorylation required for activation of the p70 S6 kinase.  相似文献   
8.
Bacterial lipopolysaccharide (LPS) is a potent activator of antibacterial responses by macrophages. Following LPS stimulation, the tyrosine phosphorylation of several proteins is rapidly increased in macrophages, and this event appears to mediate some responses to LPS. We now report that two of these tyrosine phosphoproteins of 41 and 44 kDa are isoforms of mitogen-activated protein (MAP) kinase. Each of these proteins was reactive with anti-MAP kinase antibodies and comigrated with MAP kinase activity in fractions eluted from a MonoQ anion-exchange column. Following LPS stimulation, column fractions containing the tyrosine phosphorylated forms of p41 and p44 exhibited increased MAP kinase activity. Inhibition of LPS-induced tyrosine phosphorylation of these proteins was accompanied by inhibition of MAP kinase activity. Additionally, induction of p41/p44 tyrosine phosphorylation and MAP kinase activity by LPS appeared to be independent of activation of protein kinase C, even though phorbol esters also induced these responses. These results demonstrate that LPS induces the tyrosine phosphorylation and activation of at least two MAP kinase isozymes. Since MAP kinases appear to modulate cellular processes in response to extracellular signals, these kinases may be important targets for LPS action in macrophages.  相似文献   
9.
The subcellular distribution and regulation of MAP kinase isoforms in chicken hepatoma DU249 cells was investigated with antibodies directed against peptides patterned after sequences in the mitogen-activated protein (MAP) kinases, sea star p44mpk, and rat p44erk1. MonoQ chromatography of cytosol from these cells afforded the resolution of at least four peaks of myelin basic protein (MBP) phosphotransferase activity, but only one of these (peak II) was stimulated in extracts from phorbol ester-treated cells. A 40- to 41-kDa (p41) doublet on Western blots detected with three different MAP kinase antibodies was coincident with peak II, and it probably corresponded to the avian homolog of p42mapk/erk2. Immunofluorescent studies with DU249 cells and chicken embryo fibroblasts revealed that most of the cross-reactive protein with at least two different MAP kinase antibodies was distributed in the nucleus. Subcellular fractionation studies confirmed a predominantly nuclear localization for p41 MAP kinase. Nocodazole arrest of DU249 cells was exploited for the detection of an M-phase-activated MBP kinase that was resolved from p41 MAP kinase by phenyl-Superose chromatography. Western blotting analysis with antibodies for the cdc2-encoded protein kinase and p13suc1-agarose binding studies allowed positive identification of this MBP kinase as p34cdc2.  相似文献   
10.
The observation that increased muscular activity leads to muscle hypertrophy is well known, but identification of the biochemical and physiological mechanisms by which this occurs remains an important problem. Experiments have been described (5, 6) which suggest that creatine, an end product of contraction, is involved in the control of contractile protein synthesis in differentiating skeletal muscle cells and may be the chemical signal coupling increased muscular activity and the increased muscular mass. During contraction, the creatine concentration in muscle transiently increases as creatine phosphate is hydrolyzed to regenerate ATP. In isometric contraction in skeletal muscle for example, Edwards and colleagues (3) have found that nearly all of the creatine phosphate is hydrolyzed. In this case, the creatine concentration is increased about twofold, and it is this transient change in creatine concentration which is postulated to lead to increased contractile protein synthesis. If creatine is found in several intracellular compartments, as suggested by Lee and Vissher (7), local changes in concentration may be greater then twofold. A specific effect on contractile protein synthesis seems reasonable in light of the work of Rabinowitz (13) and of Page et al. (11), among others, showing disproportionate accumulation of myofibrillar and mitochondrial proteins in response to work-induced hypertrophy and thyroxin-stimulated growth. Previous experiments (5, 6) have shown that skeletal muscles cells which have differentiated in vitro or in vivo synthesize myosin heavy-chain and actin, the major myofibrillar polypeptides, faster when supplied creatine in vitro. The stimulation is specific for contractile protein synthesis since neither the rate of myosin turnover nor the rates of synthesis of noncontractile protein and DNA are affected by creatine. The experiments reported in this communication were undertaken to test whether creatine selectively stimulates contractile protein synthesis in heart as it does in skeletal muscle.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号