首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   455篇
  免费   34篇
  2023年   2篇
  2022年   6篇
  2021年   11篇
  2020年   5篇
  2019年   5篇
  2018年   13篇
  2017年   9篇
  2016年   14篇
  2015年   24篇
  2014年   21篇
  2013年   30篇
  2012年   50篇
  2011年   38篇
  2010年   31篇
  2009年   21篇
  2008年   24篇
  2007年   27篇
  2006年   19篇
  2005年   29篇
  2004年   24篇
  2003年   22篇
  2002年   26篇
  2001年   3篇
  1999年   3篇
  1998年   4篇
  1997年   2篇
  1996年   3篇
  1995年   3篇
  1994年   2篇
  1992年   1篇
  1990年   3篇
  1989年   2篇
  1988年   1篇
  1985年   1篇
  1982年   1篇
  1980年   2篇
  1979年   1篇
  1977年   1篇
  1974年   1篇
  1965年   1篇
  1963年   1篇
  1962年   2篇
排序方式: 共有489条查询结果,搜索用时 437 毫秒
1.
2.
3.
The effect ofl-ascorbic acid on the biosynthesis of aflatoxin inAspergillus parasiticus was studied. Ascorbic acid at lower concentrations did not inhibit the growth of fungus but markedly induced aflatoxin biosynthesis. At a concentration of 1000 ppm of ascorbic acid, 4.8-fold higher levels of aflatoxin were detected. Copper did not enhance the induction of toxin synthesis by ascorbic acid when added to the growth medium. Ascorbic acid at 1000 ppm was also found to induce aflatoxin synthesis in resting mycelia. Chloroform (1% vol/vol) was found to induce aflatoxin synthesis under similar conditions. Ascorbic acid in the presence of ferrous ion can cause lipid peroxidation, which in turn is responsible for the induction of aflatoxin synthesis. During the induction of aflatoxin synthesis by ascorbic acid, the uptake of carbon source (acetate) was not affected. This observation suggests that on ascorbic acid treatment a precursor or an intermediate of aflatoxin biosynthesis is synthesized in vivo and is responsible for the higher levels of toxin without increasing the uptake of acetate.  相似文献   
4.
We describe the generation of mammalian cell lines carrying amber suppressor genes. Nonsense mutants in the herpes simplex virus thymidine kinase (HSV tk) gene, the Escherichia coli xanthine-guanine phosphoribosyl transferase (Eco-gpt) gene and the aminoglycoside 3′ phosphotransferase gene of the Tn5 transposon (NPT-II) were isolated and characterized. Each gene was engineered with the appropriate control signals to allow expression in both E. coli and mammalian cells. Expression in E. coli made possible the use of well developed bacterial and phage genetic manipulations to isolate and characterize the nonsense mutants. Once characterized, the nonsense mutants were transferred into mammalian cells by microinjection and used, in turn, to select for amber suppressor genes. Xenopus laevis amber suppressor genes, prepared by site-specific mutagenesis of a normal X. laevis tRNA gene, were microinjected into the above cell lines and selected for the expression of one or more of the amber mutant gene products. The resulting cell lines, containing functional amber suppressor genes, are stable and exhibit normal growth rates.  相似文献   
5.
The nucleotide sequence from the 5′ terminus inward of one third of mouse α- and βmaj-globin messenger RNAs has been established. In addition, using 5′ 32P end-labeled mRNAs as substrates and S1 and T1 nucleases as probes for single-stranded regions, the secondary structures of mouse and rabbit α- and β-globin mRNAs have been analyzed. Our results indicate that the AUG initiator codon in both mouse and rabbit β-globin mRNA is quite susceptible to cleavage with S1 and T1 nucleases, suggesting that it resides in a single-stranded exposed region. In contrast, the initiator AUG in the α-globin mRNA of both species is inaccessible to cleavage, indicating that it is either buried by tertiary structure or is base-paired. Since the rate of initiation of protein synthesis with β-globin mRNA in rabbit reticulocyte is 30–40% faster than for α-globin mRNA, these results imply a possible correlation between the differential rates of initiation with these two mRNAs and the accessibility of the respective AUG initiator codons.  相似文献   
6.
The lysine isoacceptor tRNAs differ in two aspects from the majority of the other mammalian tRNA species: they do not contain ribosylthymine (T) in loop IV, and a 'new' lysine tRNA, which is practically absent in non-dividing tissue, appears at elevated levels in proliferating cells. We have therefore purified the three major isoaccepting lysine tRNAs from rabbit liver and the 'new' lysine tRNA isolated from SV40-transformed mouse fibroblasts, and determined their nucleotide sequences. Our basic findings are as follows. a) The three major lysine tRNAs (species 1, 2 and 3) from rabbit liver contain 2'-O-methylribosylthymine (Tm) in place of T. tRNA1Lys and tRNA2Lys differ only by a single base pair in the middle of the anticodon stem; the anticodon sequence C-U-U is followed by N-threonyl-adenosine (t6A). TRNA3Lys has the anticodon S-U-U and contains two highly modified thionucleosides, S (shown to be 2-thio-5-carboxymethyl-uridine methyl ester) and a further modified derivative of t6 A (2-methyl-thio-N6-threonyl-adenosine) on the 3' side of the anticodon. tRNA3Lys differs in 14 and 16 positions, respectively, from the other two isoacceptors. b) Protein synthesis in vitro, using synthetic polynucleotides of defined sequence, showed that tRNA2Lys with anticodon C-U-U recognized A-A-G only, whereas tRNA3Lys, which contains thio-nucleotides in and next to the anticodon, decodes both lysine codons A-A-G and A-A-A, but with a preference for A-A-A. In a globin-mRNA-translating cell-free system from ascites cells, both lysine tRNAs donated lysine into globin. The rate and extent of lysine incorporation, however, was higher with tRNA2Lys than with tRNA3Lys, in agreement with the fact that alpha-globin and beta-globin mRNAs contain more A-A-G than A-A-A- codons for lysine. c) A comparison of the nucleotide sequences of lysine tRNA species 1, 2 and 3 from rabbit liver, with that of the 'new' tRNA4Lys from transformed and rapidly dividing cells showed that this tRNA is not the product of a new gene or group of genes, but is an undermodified tRNA derived exclusively from tRNA2Lys. Of the two dihydrouridines present in tRNA2Lys, one is found as U in tRNA4Lys; the purine next to the anticodon is as yet unidentified but is known not be t6 A. In addition we have found U, T and psi besides Tm as the first nucleoside in loop IV.  相似文献   
7.
8.
9.
The Shigella flexneri Type III secretion system (T3SS) senses contact with human intestinal cells and injects effector proteins that promote pathogen entry as the first step in causing life threatening bacillary dysentery (shigellosis). The Shigella Type III secretion apparatus (T3SA) consists of an anchoring basal body, an exposed needle, and a temporally assembled tip complex. Exposure to environmental small molecules recruits IpaB, the first hydrophobic translocator protein, to the maturing tip complex. IpaB then senses contact with a host cell membrane, forming the translocon pore through which effectors are delivered to the host cytoplasm. Within the bacterium, IpaB exists as a heterodimer with its chaperone IpgC; however, IpaB's structural state following secretion is unknown due to difficulties isolating stable protein. We have overcome this by coexpressing the IpaB/IpgC heterodimer and isolating IpaB by incubating the complex in mild detergents. Interestingly, preparation of IpaB with n‐octyl‐oligo‐oxyethylene (OPOE) results in the assembly of discrete oligomers while purification in N,N‐dimethyldodecylamine N‐oxide (LDAO) maintains IpaB as a monomer. In this study, we demonstrate that IpaB tetramers penetrate phospholipid membranes to allow a size‐dependent release of small molecules, suggesting the formation of discrete pores. Monomeric IpaB also interacts with liposomes but fails to disrupt them. From these and additional findings, we propose that IpaB can exist as a tetramer having inherent flexibility, which allows it to cooperatively interact with and insert into host cell membranes. This event may then lay the foundation for formation of the Shigella T3SS translocon pore.  相似文献   
10.
Crows (Corvus splendens) and white herons (Ardea alba) inhabit the agricultural landscapes nearby human habitats which represent dynamic ecosystem and show seasonal crop patterns. We studied the movement pattern in these birds at dawn and dusk, during solstices (December and June) and equinoxes (March and September). The movement directions were changed from uniform at dawn to a concentrated distribution at dusk all along the season suggesting that morning movements are more exploratory than evening with seasonal differences. Differential use of directions in December than June could be the effect of temperature, food availability or wind direction and speed. During breeding, less number of directions used suggests that birds might be moving towards the directions having high probability of food availability. It is likely that avian dispersal in space and time is dependent on the food availability however, further studies are required to be carried out.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号