首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   767篇
  免费   88篇
  2022年   4篇
  2021年   7篇
  2020年   14篇
  2019年   3篇
  2018年   10篇
  2017年   13篇
  2016年   22篇
  2015年   32篇
  2014年   44篇
  2013年   59篇
  2012年   71篇
  2011年   54篇
  2010年   37篇
  2009年   35篇
  2008年   37篇
  2007年   49篇
  2006年   35篇
  2005年   44篇
  2004年   54篇
  2003年   55篇
  2002年   27篇
  2001年   9篇
  2000年   10篇
  1999年   10篇
  1998年   8篇
  1997年   4篇
  1996年   4篇
  1995年   3篇
  1994年   3篇
  1992年   7篇
  1991年   11篇
  1990年   5篇
  1989年   5篇
  1988年   8篇
  1987年   12篇
  1986年   6篇
  1985年   2篇
  1984年   2篇
  1983年   3篇
  1982年   4篇
  1981年   3篇
  1980年   2篇
  1978年   5篇
  1977年   3篇
  1976年   2篇
  1975年   3篇
  1973年   4篇
  1971年   2篇
  1963年   2篇
  1954年   1篇
排序方式: 共有855条查询结果,搜索用时 15 毫秒
1.
2.
3.
Diquat is a hepatotoxin whose toxicity in vivo and in vitro is mediated by redox cycling and greatly enhanced by pretreatment with 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU), an inhibitor of glutathione reductase. The mechanism by which redox cycling mediates diquat cytotoxicity is unclear, however. Here, we have attempted to examine the roles of three potential products of redox cycling, namely superoxide anion radical (O2-.), hydrogen peroxide (H2O2), and hydroxyl radical (.OH), in the toxicity of diquat to BCNU-treated isolated hepatocytes. Addition of high concentrations of catalase, but not superoxide dismutase, to the incubations provided some protection against the toxic effect of diquat, but much better protection was observed when catalase was added in combination with the iron chelator desferrioxamine. Addition of desferrioxamine alone also provided considerable protection, whereas the addition of copper ions enhanced diquat cytotoxicity. Taken together, these results indicate that both H2O2 and the transition metals iron and copper could play major roles in the cytotoxicity of diquat. The role of O2-. remains less clear, however, but studies with diethylenetriaminepentaacetic acid indicate that O2-. is unlikely to significantly contribute to the reduction of Fe3+ to Fe2+. The hydroxyl radical or a related species seems the most likely ultimate toxic product of the H2O2/Fe2+ interaction, but hydroxyl radical scavengers afforded only minimal protection.  相似文献   
4.
Incubation of isolated hepatocytes in the presence of either the parkinsonian-inducing compound 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) or its putative toxic metabolite 1-methyl-4-phenylpyridinium ion (MPP+) led to a depletion of intracellular reduced glutathione (GSH), which was mostly recovered as glutathione disulfide (GSSG). However, both MPTP- and MPP+-induced glutathione perturbances were relatively unaffected by the prior inhibition of glutathione reductase with 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU), suggesting that intracellular oxidation was not the major mechanism involved in the GSH loss. Inclusion of cystine in the incubation mixtures revealed a time-dependent formation of cysteinyl glutathione (CySSG), indicating that an increased efflux was mostly responsible for the MPTP- and MPP+-induced GSH depletion. Therefore, the measurement of GSSG, which is apparently formed extracellularly, was not associated with oxidative stress.  相似文献   
5.
6.
The derivatisation of intact rat hepatocytes with monobromobimane resulted in rapid labelling of accessible protein thiols in several subcellular fractions. The derivatisation procedure did not cause acute cytotoxicity, nor did it alter the buoyant densities of the fractions or their gross protein compositions. Quantitation of the fluorescence irreversibly associated with the fractions demonstrated considerable intracellular heterogeneity in this pool of thiols. Values were highest in cytosol (ca. 90 nmol/mg protein), intermediate in microsomes (ca. 65 nmol/mg protein) and mitochondria (ca. 45 nmol/mg protein) and lowest in a crude fraction containing both nuclei and plasma membrane (ca. 35 nmol/mg protein). Similar values were obtained from microsomes and cytosol derivatised after fractionation but there were significant increases of ca. 100% in corresponding values from isolated mitochondria and the nuclear/plasma membrane fraction. These results are discussed in terms of the dynamic fluxes in monobromobimane protein thiols during fractionation and the applicability of this noninvasive method to studies of the mechanism(s) of toxicity of reactive xenobiotics and the role(s) of protein thiols in normal cellular function.  相似文献   
7.
8.
In order to clarify the role of oxidative processes in cytotoxicity we have studied the metabolism and toxicity of 2-methyl-1,4-naphthoquinone (menadione) and its 2,3 dimethyl (DMNQ) and 2,3 diethyl (DENQ) analogs in isolated rat hepatocytes. The two analogs, unlike menadione, cannot alkylate nucleophiles directly and were considerably less toxic than menadione. This decreased toxicity was consistent with the inability of DMNQ and DENQ to alkylate but we also found them to undergo lower rates of redox cycling in hepatocytes and a higher ratio of two electron as opposed to one electron reduction relative to menadione. Thus, facile analysis of the respective roles of alkylation and oxidation in cytotoxicity was not possible using these compounds. In hepatocytes pretreated with bischloroethyl-nitrosourea (BCNU) to inhibit glutathione reductase, all three naphthoquinones caused a potentiation of reduced glutathione (GSH) removal/oxidized glutathione (GSSG) generation and cytotoxicity relative to that observed in control cells. These data show that inhibition of hepatocyte glutathione reductase by BCNU results in enhanced naphthoquinone-induced oxidative challenge and subsequent cellular toxicity. That DMNQ and DENQ are cytotoxic, albeit at high concentrations, and that this cytotoxicity is potentiated by BCNU pretreatment suggest that oxidative processes alone can be a determinant of cytotoxicity.  相似文献   
9.
TOL plasmid pWW0 specifies enzymes for the oxidative catabolism of toluene and xylenes. The upper pathway converts the aromatic hydrocarbons to aromatic carboxylic acids via corresponding alcohols and aldehydes and involves three enzymes: xylene oxygenase, benzyl alcohol dehydrogenase, and benzaldehyde dehydrogenase. The synthesis of these enzymes is positively regulated by the product of xylR. Determination of upper pathway enzyme levels in bacteria carrying Tn5 insertion mutant derivatives of plasmid pWW0-161 has shown that the genes for upper pathway enzymes are organized in an operon with the following order: promoter-xylC (benzaldehyde dehydrogenase gene[s])-xylA (xylene oxygenase gene[s])-xylB (benzyl alcohol dehydrogenase gene). Subcloning of the upper pathway genes in a lambda pL promoter-containing vector and analysis of their expression in Escherichia coli K-12 confirmed this order. Two distinct enzymes were found to attack benzyl alcohol, namely, xylene oxygenase and benzyl alcohol dehydrogenase; and their catalytic activities were additive in the conversion of benzyl alcohol to benzaldehyde. The fact that benzyl alcohol is both a product and a substrate of xylene oxygenase indicates that this enzyme has a relaxed substrate specificity.  相似文献   
10.
Chemical analysis of rhinovirus 14 revealed a ribonucleic acid (RNA) content of 29.8% and a high adenylic acid content (35%). A partial specific volume of 0.682 cm3/g was obtained for the rhinovirion. Rhinovirus and poliovirus had identical sedimentation coefficients of 158S. A diffusion coefficient of 1.71 × 10−7 cm2/sec was consistent with a hydrated diameter of 25 nm for the rhinovirion. The calculated molecular weights of the rhinovirion and its genome were 7.1 × 106 and 2.1 × 106 daltons, respectively. Sedimentation analysis of infectious RNA confirmed the similarity of the molecular size of the poliovirus and rhinovirus genomes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号