首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
  2017年   1篇
  2014年   1篇
  2009年   2篇
排序方式: 共有4条查询结果,搜索用时 31 毫秒
1
1.

Background

The roots of adult hypertension go back to childhood. This study aimed to examine the independent effects of physical, behavioural and genetic factors identified in childhood and mid-adulthood for prediction of adult hypertension.

Methods

The study subjects were participants of the Kaunas Cardiovascular Risk Cohort study started in 1977 (n = 1082, age 12–13 years). In 2012, a total of 507 individuals (63.9% of eligible sample) participated in the 35-year follow-up survey. Health examination involved measurements of blood pressure (BP), anthropometric parameters, and interview about health behaviours. Subjects were genotyped for AGT (M235T), ACE (I/D, rs4340), ADM (rs7129220), and CACNB2 (rs12258967) genes polymorphisms. A genetic risk score was calculated as the sum of the number of risk alleles at each of four single nucleotide polymorphisms.

Results

AGT TT genotype male carriers had the highest mean values of systolic BP in childhood. In females, ADM genotype AA was associated with the highest values of systolic and diastolic BP, while CACNB2 genotype CC carriers had the highest values of diastolic BP in childhood. Systolic and diastolic BP in childhood, gain in BMI from childhood to adulthood, and risky alcohol consumption predicted hypertension in middle-aged men. In women, genetic risk score together with diastolic BP in childhood and gain in BMI were significant predictors of adult hypertension. The comparison of four nested logistic regression models showed that the prediction of hypertension improved significantly after the addition of BMI gain. Genetic risk score had a relatively weak effect on the improvement of the model performance in women.

Conclusions

BP in childhood and the gain in BMI from childhood to adulthood were significant predictors of adult hypertension in both genders. Genetic risk score in women and risky alcohol consumption in men were independently related with the risk of adult hypertension.  相似文献   
2.
The glucocorticoid activating enzyme 11β‐hydroxysteroid dehydrogenase type 1 (11βHSD1) is of major interest in obesity‐related morbidity. Alterations in tissue‐specific cortisol levels may influence lipogenetic and gluco/glyceroneogenetic pathways in fat and liver. We analyzed the expression and activity of 11βHSD1 as well as the expression of phosphoenolpyruvate carboxykinase (PEPCK), sterol regulatory element binding protein (SREBP), and fatty acid synthase (FAS) in adipose and liver and investigated putative associations between 11βHSD1 and energy metabolism genes. A total of 33 obese women (mean BMI 44.6) undergoing gastric bypass surgery were enrolled. Subcutaneous adipose tissue (SAT), omental fat (omental adipose tissue (OmAT)), and liver biopsies were collected during the surgery. 11βHSD1 gene expression was higher in SAT vs. OmAT (P = 0.013), whereas the activity was higher in OmAT (P = 0.009). The SAT 11βHSD1 correlated with waist circumference (P = 0.045) and was an independent predictor for the OmAT area in a linear regression model. Energy metabolism genes had AT depot–specific expression; higher leptin and SREBP in SAT than OmAT, but higher PEPCK in OmAT than SAT. The expression of 11βHSD1 correlated with PEPCK in both AT depots (P = 0.05 for SAT and P = 0.0001 for OmAT). Hepatic 11βHSD1 activity correlated negatively with abdominal adipose area (P = 0.002) and expression positively with PEPCK (P = 0.003). In human obesity, glucocorticoid regeneration in the SAT is associated with central fat accumulation indicating that the importance of this specific fat depot is underestimated. Central fat accumulation is negatively associated with hepatic 11βHSD1 activity. A disturbance in peripheral glucocorticoid metabolism is associated with changes in genes involved in fatty acid (FA) recycling in adipose tissue (AT).  相似文献   
3.
With age and menopause there is a shift in adipose distribution from gluteo-femoral to abdominal depots in women. Associated with this redistribution of fat are increased risks of type 2 diabetes and cardiovascular disease. Glucocorticoids influence body composition, and 11β-hydroxysteroid dehydrogenase type 1 (11βHSD1) which converts inert cortisone to active cortisol is a putative key mediator of metabolic complications in obesity. Increased 11βHSD1 in adipose tissue may contribute to postmenopausal central obesity. We hypothesized that tissue-specific 11βHSD1 gene expression and activity are up-regulated in the older, postmenopausal women compared to young, premenopausal women. Twenty-three pre- and 23 postmenopausal, healthy, normal weight women were recruited. The participants underwent a urine collection, a subcutaneous adipose tissue biopsy and the hepatic 11βHSD1 activity was estimated by the serum cortisol response after an oral dose of cortisone. Urinary (5α-tetrahydrocortisol+5β-tetrahydrocortisol)/tetrahydrocortisone ratios were higher in postmenopausal women versus premenopausal women in luteal phase (P<0.05), indicating an increased whole-body 11βHSD1 activity. Postmenopausal women had higher 11βHSD1 gene expression in subcutaneous fat (P<0.05). Hepatic first pass conversion of oral cortisone to cortisol was also increased in postmenopausal women versus premenopausal women in follicular phase of the menstrual cycle (P<0.01, at 30 min post cortisone ingestion), suggesting higher hepatic 11βHSD1 activity. In conclusion, our results indicate that postmenopausal normal weight women have increased 11βHSD1 activity in adipose tissue and liver. This may contribute to metabolic dysfunctions with menopause and ageing in women.  相似文献   
4.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号