首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   36篇
  免费   6篇
  42篇
  2022年   1篇
  2017年   1篇
  2013年   1篇
  2008年   1篇
  2006年   1篇
  2004年   3篇
  2003年   2篇
  2002年   3篇
  2001年   3篇
  2000年   4篇
  1999年   4篇
  1997年   1篇
  1996年   3篇
  1995年   1篇
  1994年   1篇
  1993年   4篇
  1992年   1篇
  1991年   2篇
  1990年   1篇
  1989年   1篇
  1988年   1篇
  1985年   1篇
  1974年   1篇
排序方式: 共有42条查询结果,搜索用时 9 毫秒
1.
Eco R124I, Eco DXXI and Eco prrI are the known members of the type IC family of DNA restriction and modification systems. The first three are carried on large, conjugative plasmids, while Eco prrI is chromosomally encoded. The enzymes are coded by three genes, hsdR , hsdM and hsdS . Analysis of the DNA sequences upstream and downstream of the type IC hsd loci shows that all are highly homologous to each other and also to sequences present in the bacteriophage P1 genome. The upstream sequences include functional phd and doc genes, which encode an addiction system that stabilizes the P1 prophage state, and extend to and beyond pac , the site at which phage DNA packaging begins. Downstream of the hsd loci, P1 DNA sequences begin at exactly the same place for all of the systems. For Eco DXXI and Eco prrI the P1 homology extends for thousands of base pairs while for Eco R124I an IS 1 insertion and an associated deletion have removed most of the P1-homologous sequences. The significance of these results for the evolution of DNA restriction and modification systems is discussed.  相似文献   
2.

We assessed the potential for microbial interactions influencing a well-documented host–pathogen system. Mycoplasma agassizii is the known etiological agent of upper respiratory tract disease in Mojave desert tortoises (Gopherus agassizii), but disease in wild animals is extremely heterogeneous. For example, a much larger proportion of animals harbor M. agassizii than those that develop disease. With the availability of a new quantitative PCR assay for a microbe that had previously been implicated in disease, Pasteurella testudinis, we tested 389 previously collected samples of nasal microbes from tortoise populations across the Mojave desert. We showed that P. testudinis is a common commensal microbe. However, we did find that its presence was associated with higher levels of M. agassizii among the tortoises positive for this pathogen. The best predictor of P. testudinis prevalence in tortoise populations was average size of tortoises, suggesting that older populations have higher levels of P. testudinis. The prevalence of co-infection in populations was associated with the prevalence of URTD, providing additional evidence for an indirect interaction between the two microbes and inflammatory disease. We showed that URTD, like many chronic, polymicrobial diseases involving mucosal surfaces, shows patterns of a polymicrobial etiology.

  相似文献   
3.
The pyridoxal-5'-phosphate-dependent enzymes (B(6) enzymes), that operate in the metabolism of amino acids, are of multiple evolutionary origin. To estimate their rates of evolution, a total of 180 sequences of 21 B(6) enzymes from distantly related eukaryotic species were compared. The enzymes belong to all four evolutionarily independent families of B(6) enzymes with different folds, i.e., the large alpha family, the beta family, the d-alanine aminotransferase family, and the alanine racemase family. Their unit evolutionary periods, i.e., the time for a 1% sequence difference to accumulate between branches, ranged from 4.6 to 45.1 million years. Both, fastest changing serine pyruvate aminotransferase and most slowly changing glutamate decarboxylase are members of the alpha family. The evolutionary rates of the few enzymes belonging to the other three families were interspersed among those of the alpha family members. Enzymes that catalyze the same reaction, e.g., transamination or amino acid decarboxylation, with different substrates show widely varying rates. The absence of correlations of the rate of evolution with either protein fold or type of catalyzed reaction suggests that individual functional constraints have determined the differential rates of evolution of B(6) enzymes.  相似文献   
4.
Type I restriction enzymes bind to a specific DNA sequence and subsequently translocate DNA past the complex to reach a non-specific cleavage site. We have examined several potential blocks to DNA translocation, such as positive supercoiling or a Holliday junction, for their ability to trigger DNA cleavage by type I restriction enzymes. Introduction of positive supercoiling into plasmid DNA did not have a significant effect on the rate of DNA cleavage by EcoAI endonuclease nor on the enzyme's ability to select cleavage sites randomly throughout the DNA molecule. Thus, positive supercoiling does not prevent DNA translocation. EcoR124II endonuclease cleaved DNA at Holliday junctions present on both linear and negatively supercoiled substrates. The latter substrate was cleaved by a single enzyme molecule at two sites, one on either side of the junction, consistent with a bi-directional translocation model. Linear DNA molecules with two recognition sites for endonucleases from different type I families were cut between the sites when both enzymes were added simultaneously but not when a single enzyme was added. We propose that type I restriction enzymes can track along a DNA substrate irrespective of its topology and cleave DNA at any barrier that is able to halt the translocation process.  相似文献   
5.
6.
Summary To elucidate the cellular basis of hemoglobin transition inXenopus laevis the distribution of larval and adult hemoglobins was analyzed by indirect immunofluorescence in the circulating erythrocytes during metamorphosis. In addition, the morphological characteristics as well as the capacity for synthesis of DNA and hemoglobin in the erythrocytes were followed during the same developmental period. Our quantitative analysis on the distribution of larval and adult hemoglobins suggests that they are localized in different cells. Hemoglobin transition, therefore, most likely reflects replacement of the larval erythrocyte population by new cells which are committed to adult globin synthesis. Since hemoglobin transition is not accompanied by an increase in the abundance of immature erythroid cells with active DNA synthesis, we assume that the presumptive adult erythroid cells are released into circulation at a relatively advanced stage of maturation. The decline in the synthesis of DNA and larval hemoglobin further indicates that cessation of cell renewal in the larval erythrocyte population may represent a decisive step in hemoglobin transition.  相似文献   
7.
8.
9.
A PCR assay for the amplification of small subunit ribosomal DNA (SSU rDNA) of Euryarchaea was developed and used to detect archaeal rDNA in 37 (77%) out of 48 pooled subgingival plaque samples from 48 patients suffering from periodontal disease. One major group of cloned periodontal sequences was identical to Methanobrevibacter oralis and a second minor group to Methanobrevibacter smithii. These two groups and a third novel group were found to be more than 98% similar to each other over an 0.65-kb segment of the 16S rRNA gene sequenced. M. oralis was found to be the predominant archaeon in the subgingival dental plaque. Phylogenetic analysis of partial SSU rDNA sequences revealed evidence for a distinct cluster for human and animal Methanobrevibacter sp. within the Methanobacteriaceae family.  相似文献   
10.
The authors collected Sahelian sorghum landraces of Burkina Faso in 1984 and 74 of these accessions were characterized in 1985–1986 at Gampela in Burkina Faso (West Africa). The five races of cultivated sorghum were represented in this zone but 63.5% of the accessions were Guinea type. Great intra-and inter-accession variability was found. Plants were tall and had long panicles and small to intermediate seeds. There was a strong association between days-to-flowering, number of internodes, panicle length and height. The 100-kernel weight showed an antagonism with days to flowering and tillering. Multivariate analyses were made which enabled the accessions to be classified into four groups. The group most adapted to the sahelian zone, sahelian group, was semi-late, developed intermediate size of vegetative organs, had moderate tillering and had the best yield per plant.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号