首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   91篇
  免费   11篇
  2022年   1篇
  2021年   2篇
  2020年   1篇
  2016年   1篇
  2015年   2篇
  2014年   6篇
  2013年   3篇
  2012年   5篇
  2011年   2篇
  2010年   4篇
  2009年   1篇
  2008年   4篇
  2007年   5篇
  2006年   6篇
  2005年   5篇
  2004年   5篇
  2003年   4篇
  2002年   3篇
  2001年   5篇
  2000年   2篇
  1998年   2篇
  1997年   3篇
  1996年   1篇
  1995年   1篇
  1993年   3篇
  1992年   3篇
  1991年   2篇
  1990年   3篇
  1989年   1篇
  1988年   2篇
  1987年   2篇
  1986年   2篇
  1985年   1篇
  1982年   2篇
  1977年   4篇
  1976年   1篇
  1974年   1篇
  1972年   1篇
排序方式: 共有102条查询结果,搜索用时 615 毫秒
1.
L Fetler  P Tauc  G Hervé  M M Ladjimi  J C Brochon 《Biochemistry》1992,31(49):12504-12513
Aspartate transcarbamylase (EC 2.1.3.2) contains two tryptophan residues in position 209 and 284 of the catalytic chains (c) and no such chromophore in the regulatory chains (r). Thus, as a dodecamer [(c3)2(r2)3] the native enzyme molecule contains 12 tryptophan residues. The present study of the regulatory conformational changes in this enzyme is based on the fluorescence properties of these intrinsic probes. Site-directed mutagenesis was used in order to differentiate the respective contributions of the two tryptophans to the fluorescence properties of the enzyme and to identify the mobility of their environment in the course of the different regulatory processes. Each of these tryptophan residues gives two independent fluorescence decays, suggesting that the catalytic subunit exists in two slightly different conformational states. The binding of the substrate analog N-phosphonacetyl-L-aspartate promotes the same fluorescence signal whether or not the catalytic subunits are associated with the regulatory subunits, suggesting that the substrate-induced conformational change of the catalytic subunit is the essential trigger for the quaternary structure transition involved in cooperativity. The binding of the substrate analog affects mostly the environment of tryptophan 284, while the binding of the activator ATP affects mostly the environment of tryptophan 209, confirming that this activator acts through a mechanism different from that involved in homotropic cooperativity.  相似文献   
2.
3.
A new crystal form of a mitogenic lectin from pea seeds (Pisum sativum) has been obtained which is suitable for high resolution structural work. The crystals are orthorhombic, space group P212121, with unit cell dimensions: a = 64.2Å, b = 72. 7Å, c = 108. 3Å. The asymmetric unit contains one protein molecule.  相似文献   
4.
J.C. Brochon  Ph. Wahl  J.M. Jallon  M. Iwatsubo 《BBA》1977,462(3):759-769
A method is proposed to determine the rates of singlet energy transfers in an array of chromophores containing a finite number of donors and fluorescent acceptors. This method is based on measurements of transfer efficiency coupled with pulse fluorimetry. Three classes of donors can be distinguished which differ in their energy transfer rate. The rates of the first, the second and the third class are respectively greater than, of the order of, and smaller than the emission rate. The method is applied to the study of the energy transfers from tryptophan residues to NADPH, in ternary and quaternary glutamate dehydrogenase complexes. Practically, all these tryptophan residues belong to the first class. They can be divided into two subclasses having different transfer rate values. The distances between these residues and the NADPH site are of the order of 2.5 nm. In addition, the ligand binding induces a protein conformational change, leading to a fluorescence quenching of the tryptophanyl emission.  相似文献   
5.
When a protein's active site happens to be strongly coupled with the protein structure, the rate constant of the reaction may eventually be modulated by the conformational fluctuations. Evidence for this effect has long been provided by extensive flash photolysis investigations of liganded hemoproteins and more recently of the non-heme respiratory protein hemerythrin in hydro-organic solvents. Within a given protein conformational substate, an elementary reaction step is characterized by one single free energy barrier and by a first-order rate constant, k, which changes with temperature according to an Arrhenius law. At physiological temperature and low viscosity, ultrafast conformational relaxation causes efficient averaging of the reaction rates and the protein displays exponential kinetics with an average rate constant (k). Under sufficiently general conditions, it can be shown that (k) also follows a simple Arrhenius law with 'effective' values of the pre-exponential factor Aeff and activation enthalpy Heff. It is found that Aeff strongly depends on the overall shape of the rate constant distribution and that Heff actually corresponds to the lower limit of the enthalpy of activation, i.e. the value associated with the highest possible reaction rate. The underlying distribution of rate constants can be reconstructed from a set of experiments in which the kinetics depart from an exponential, i.e. at low temperature and high viscosity. The most probable distribution of exponentials consistent with the observed kinetics of the geminate recombinations of oxygen with photodissociated hemerythrin has been determined by using a new approach, known as the maximum entropy method. The results are consistent with a single pre-exponential value and a distributed enthalpy spectrum. As expected, Heff does not coincide either with the most probable nor with the average value of the enthalpy. The most salient findings are that the probability for any protein molecule to have an enthalpy of activation equal to the effective value Heff vanishes and that Aeff differs by nearly three orders of magnitude from the true value A0. Biochemical reaction rates are actually average values, since protein reactions are measured under physiological conditions, where conformational relaxation is always fast. Our understanding of the significance of Aeff and Heff is therefore entirely dependent on the knowledge of the distribution function of the rate constants. In particular, enthalpy and entropy terms of similar reactions performed by different proteins cannot be compared as long as the distribution of the rate constants remains unknown.  相似文献   
6.
Time-resolved fluorescence and fluorescence anisotropy data surfaces of flavin adenine dinucleotide bound to lipoamide dehydrogenase from Azotobacter vinelandii in 80% glycerol have been obtained by variation of excitation energy and temperature between 203 and 303 K. The fluorescence kinetics of a deletion mutant lacking 14 COOH-terminal amino acids were compared with the wild-type enzyme to study a possible interaction of the COOH-terminal tail with the active site of the enzyme. The flavin adenine dinucleotide fluorescence in both proteins exhibits a bimodal lifetime distribution as recovered by the maximum entropy method of data analysis. The difference in standard enthalpy and entropy of associated conformational substates was retrieved from the fractional contributions of the two lifetime classes. Activation energies of thermal quenching were obtained that confirm that the isoalloxazines in the deletion mutant are solvent accessible in contrast to the wild-type enzyme. Red-edge spectroscopy in conjunction with variation of temperature provides the necessary experimental axes to interpret the fluorescence depolarization in terms of intersubunit energy transfer rather than reorientational dynamics of the flavins. The results can be explained by a compartmental model that describes the anisotropy decay of a binary, inhomogeneously broadened, homoenergy transfer system. By using this model in a global analysis of the fluorescence anisotropy decay surface, the distance between and relative orientation of the two isoalloxazine rings are elucidated. For the wild-type enzyme, this geometrical information is in agreement with crystallographic data of the A. vinelandii enzyme, whereas the mutual orientation of the subunits in the deletion mutant is slightly altered. In addition, the ambiguity in the direction of the emission transition moment in the isoalloxazine ring is solved. The anisotropy decay parameters also provide information on electronic and dipolar relaxational properties of the flavin active site. The local environment of the prosthetic groups in the deletion mutant of the A. vinelandii enzyme is highly inhomogeneous, and a transition from slow to rapid dipolar relaxation is observed over the measured temperature range. In the highly homogeneous active site of the wild-type enzyme, dipolar relaxation is slowed down beyond the time scale of fluorescence emission at any temperature studied. Our results are in favor of a COOH-terminal polypeptide interacting with the active site, thereby shielding the isoalloxazines from the solvent. This biological system forms a very appropriate tool to test the validity of photophysical models describing homoenergy transfer.  相似文献   
7.
Fetler L  Tauc P  Hervé G  Cunin R  Brochon JC 《Biochemistry》2001,40(30):8773-8782
The homotropic and heterotropic interactions in Escherichia coli aspartate transcarbamylase (EC 2.1.3.2) are accompanied by various structure modifications. The large quaternary structure change associated with the T to R transition, promoted by substrate binding, is accompanied by different local conformational changes. These tertiary structure modifications can be monitored by fluorescence spectroscopy, after introduction of a tryptophan fluorescence probe at the site of investigation. To relate unambiguously the fluorescence signals to structure changes in a particular region, both naturally occurring Trp residues in positions 209c and 284c of the catalytic chains were previously substituted with Phe residues. The regions of interest were the so-called 240's loop at position Tyr240c, which undergoes a large conformational change upon substrate binding, and the interface between the catalytic and regulatory chains in positions Asn153r and Phe145r supposed to play a role in the different regulatory processes. Each of these tryptophan residues presents a complex fluorescence decay with three to four independent lifetimes, suggesting that the holoenzyme exists in slightly different conformational states. The bisubstrate analogue N-phosphonacetyl-L-aspartate affects mostly the environment of tryptophans at position 240c and 145r, and the fluorescence signals were related to ligand binding and the quaternary structure transition, respectively. The binding of the nucleotide activator ATP slightly affects the distribution of the conformational substates as probed by tryptophan residues at position 240c and 145r, whereas the inhibitor CTP modifies the position of the C-terminal residues as reflected by the fluorescence properties of Trp153r. These results are discussed in correlation with earlier mutagenesis studies and mechanisms of the enzyme allosteric regulation.  相似文献   
8.
Dynamic fluorescence spectroscopy brings new insight into the functional and structural changes of biological molecules under moderate and high hydrostatic pressure. The principles of time-resolved fluorescence methods are briefly described and the resulting type of information is summarized. A first set of selected applications of the use of dynamic fluorescence on pressure effects on proteins in terms of denaturation, ternary and quaternary structure, aggregation and also interaction with DNA are presented. A second set of applications is devoted to the effect of pressure and of cholesterol on lateral heterogeneity of lipidic membranes.  相似文献   
9.
After cell entry, HIV undergoes rapid transport toward the nucleus using microtubules and microfilaments. Neither the cellular cytoplasmic components nor the viral proteins that interact to mediate transport have yet been identified. Using a yeast two-hybrid screen, we identified four cytoskeletal components as putative interaction partners for HIV-1 p24 capsid protein: MAP1A, MAP1S, CKAP1, and WIRE. Depletion of MAP1A/MAP1S in indicator cell lines and primary human macrophages led to a profound reduction in HIV-1 infectivity as a result of impaired retrograde trafficking, demonstrated by a characteristic accumulation of capsids away from the nuclear membrane, and an overall defect in nuclear import. MAP1A/MAP1S did not impact microtubule network integrity or cell morphology but contributed to microtubule stabilization, which was shown previously to facilitate infection. In addition, we found that MAP1 proteins interact with HIV-1 cores both in vitro and in infected cells and that interaction involves MAP1 light chain LC2. Depletion of MAP1 proteins reduced the association of HIV-1 capsids with both dynamic and stable microtubules, suggesting that MAP1 proteins help tether incoming viral capsids to the microtubular network, thus promoting cytoplasmic trafficking. This work shows for the first time that following entry into target cells, HIV-1 interacts with the cytoskeleton via its p24 capsid protein. Moreover, our results support a role for MAP1 proteins in promoting efficient retrograde trafficking of HIV-1 by stimulating the formation of stable microtubules and mediating the association of HIV-1 cores with microtubules.  相似文献   
10.
Following legislative changes in 2004 and the establishment of the Human Tissue Authority, access to human tissues for biomedical research became a more onerous and tightly regulated process. Ethical Tissue was established to meet the growing demand for human tissues, using a process that provided ease of access by researchers whilst maintaining the highest ethical and regulatory standards. The establishment of a licensed research tissue bank entailed several key criteria covering ethical, legal, financial and logistical issues being met. A wide range of stakeholders, including the HTA, University of Bradford, flagged LREC, hospital trusts and clinical groups were also integral to the process.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号