首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   533篇
  免费   29篇
  国内免费   1篇
  2023年   6篇
  2022年   12篇
  2021年   24篇
  2020年   8篇
  2019年   20篇
  2018年   22篇
  2017年   28篇
  2016年   22篇
  2015年   29篇
  2014年   44篇
  2013年   41篇
  2012年   34篇
  2011年   46篇
  2010年   18篇
  2009年   16篇
  2008年   17篇
  2007年   11篇
  2006年   13篇
  2005年   5篇
  2004年   11篇
  2003年   7篇
  2002年   10篇
  2001年   4篇
  2000年   7篇
  1999年   7篇
  1996年   2篇
  1995年   2篇
  1993年   3篇
  1992年   6篇
  1991年   4篇
  1990年   6篇
  1989年   13篇
  1988年   11篇
  1986年   4篇
  1985年   13篇
  1984年   2篇
  1983年   4篇
  1982年   6篇
  1981年   3篇
  1980年   7篇
  1979年   3篇
  1978年   1篇
  1977年   2篇
  1976年   1篇
  1975年   1篇
  1974年   1篇
  1972年   1篇
  1971年   1篇
  1969年   1篇
  1967年   1篇
排序方式: 共有563条查询结果,搜索用时 46 毫秒
1.
Lead is a heavy metal widely distributed in the environment. Lead is a ubiquitous environmental toxin that is capable of causing numerous acute and chronic illnesses. Human and animal exposure demonstrates that lead is nephrotoxic. However, attempts to reduce lead-induced nephrotoxicity were not found suitable for clinical use. Recently, flaxseed oil (FXO), a rich source of ω-3 fatty acids and lignans, has been shown to prevent/reduce the progression of certain types of cardiovascular and renal disorders. In view of this, the present study investigates the protective effect of FXO on lead acetate (PbAc)-induced renal damage. Rats were pre-fed normal diet and the diet rich in FXO for 14 days, and then, four doses of lead acetate (25 mg/kg body weight) were administered intraperitoneally while still on diet. Various serum parameters, enzymes of carbohydrate metabolism, brush border membrane (BBM), and oxidative stress were analyzed in rat kidney. PbAc nephrotoxicity was characterized by increased serum creatinine and blood urea nitrogen. PbAc increased the activities of lactate dehydrogenase and NADP-malic enzyme, whereas it decreased malate and glucose-6-phosphate dehydrogenase, glucose-6-phosphatase, fructose-1, 6-bisphosphatase, and BBM enzyme activities. PbAc caused oxidant/antioxidant imbalances as reflected by increased lipid peroxidation and decreased activities of superoxide dismutase, glutathione peroxidase, and catalase. In contrast, FXO alone enhanced the enzyme activities of carbohydrate metabolism, BBM, and antioxidant defense system. FXO feeding to PbAc-treated rats markedly enhanced resistance to PbAc-elicited deleterious effects. In conclusion, dietary FXO supplementation ameliorated PbAc-induced specific metabolic alterations and oxidative damage by empowering antioxidant defense mechanism and improving BBM integrity and energy metabolism.  相似文献   
2.
Purified L-cell colony stimulating factor (CSF) and rabbit anti-CSF serum were used to devise a radioimmunoassay for this factor. The CSF was radiolabelled with the aid of lactoperoxidase and precipitated by a double antibody technique. Addition of unlabelled CSF caused a dose-related displacement of the labelled tracer. Similar results were noted with conditioned media and murine serum. The assay required only 4 days for completion as compared with 7 days for the conventional agar gel bioassay. Moreover, the radioimmunoassay proved more sensitive and accurate than the bioassay. This technique should allow further exploration of the role of CSF in granulopoiesis.  相似文献   
3.
Alignment of the amino-acid sequences of the human lysosomal acid phosphatase (LAP) and human prostatic acid phosphatase (PAP) yielded an extensive homology between the two mature polypeptide chains. In the overlapping part, which extends over the entire PAP sequence and the N-terminal 90% of the LAP sequence, the identity is 49.1%. The LAP has an additional C-terminal sequence, which is encoded by the last exon of the LAP gene. This sequence contains the transmembrane domain of LAP, which is lacking in the secretory PAP. All six cysteine residues as well as 20 out of 27 (LAP) and 26 (PAP) proline residues present in the overlapping part of the proteins are conserved, suggesting that they are involved in stabilization of the tertiary structure of both proteins. Only two out of 8 N-glycosylation sites in LAP and 3 in PAP are conserved, suggesting that the dense N-glycosylation of LAP is related to its function in lysosomes.  相似文献   
4.
Human serum and urine contain polypeptides which bind mannose 6-phosphate (M6P) and insulin-like growth factor II (IGF II) and crossreact with antibodies against the M6P/IGF II receptor. These polypeptides are considered to be fragments of the M6P/IGF II receptor. The major Mr approx. 205,000 fragment in serum and urine is about 10 kDa smaller in size than the membrane-associated receptor and is accompanied by minor forms with Mr values ranging from 104,000 to 180,000. The presence of receptor fragments in biological fluids indicates that shedding is one of the mechanisms contributing to the turnover of the M6P/IGF II receptor and that receptor fragments are part of the heterogenous group of serum proteins whic bind IGF II.  相似文献   
5.
The effect of M-CSF-exposed macrophages on murine splenic lymphocyte responses was determined. Resident peritoneal macrophages incubated with purified M-CSF for 48 hr inhibited lymphocyte proliferation to Con A, PHA, and listerial antigen as determined by [3H]TdR uptake, and inhibited Con A-stimulated lymphocyte IL 2 production. The inhibition was similar to that observed with macrophages from BCG-infected mice. Maximal suppression occurred at M-CSF concentrations of 500 U/ml or greater and when the incubation time with M-CSF was 48 hr or more. M-CSF effect was specific because rabbit anti-M-CSF IgG blocked the suppression whereas control rabbit IgG did not. Secretory products of macrophages could not be implicated in this interaction. Catalase and indomethacin, alone or together, did not reverse the inhibition. In addition, putative suppressive factors were not detected in supernatants of M-CSF-stimulated macrophages. Lymphocytes that were removed from macrophage monolayers and were recultured in medium plus Con A were able to proliferate. Macrophages stimulated by M-CSF therefore appear to have inhibitory activity for proliferating lymphocytes, and may play a role in immunoregulatory mechanisms.  相似文献   
6.
Arylsulfatase A (arylsulfate sulfohydrolase, EC 3.1.6.1), a mammalian lysosomal enzyme, is initially synthesized as a 69, 67 and 64 kDa precursor polypeptide in a prostate carcinoma cell line PC-3SF12, in HeLa cells and in a normal human embryonic lung cell line WI-38, respectively. These precursor polypeptides are secreted into the medium or processed to mature enzymes of apparent molecular mass 66, 64 or 62 kDa in PC-3SF12, HeLa or WI-38 cells, respectively. The precursor and mature polypeptides in WI-38 cells are phosphorylated, and the phosphate is lost upon treatment with endo-beta-hexosaminidase H. Arylsulfatase A is also shown to be sulfated in WI-38 cells. The presence of castanospermine, an inhibitor of sulfation of the second N-acetylglucosamine residue of the chitobiose core, does not reduce the extent of sulfation of arylsulfatase A, suggesting that either terminal sugars or the protein is sulfated. Sulfation may have a protective function similar to that of terminal sialic acid residues in glycoproteins. Although the subcellular location of arylsulfatase A is identical in PC-3SF12 and in WI-38 cells, pulse-chase experiments indicate that arylsulfatase A protein has a slower turnover in the prostate carcinoma cell line than it does in the normal human lung cell line. The differences in the apparent molecular weights of arylsulfatase A in the normal and carcinoma cell lines are shown to be due to variations in the carbohydrate content of the enzyme. The apparent molecular mass of the polypeptide chain obtained after endo-beta-hexosaminidase H treatment is 59 kDa, a value which is identical for all three cell lines studied here. These results suggest the possibility of an enhanced activity of terminal glucosyltransferase enzymes in carcinoma cell lines and in tumor tissues. Arylsulfatase A may be a useful marker for studying transformation-related processes in human cell lines.  相似文献   
7.
Purified mouse L cell colony-stimulating factor (CSF) and purified iron-saturated human lactoferrin (LF) were assessed for their effects on release of acidic isoferritin-inhibitory activity (AIFIA) from resident peritoneal and spleen macrophages of B6D2F1 mice. Constitutive release of AIFIA was dependent on the number of macrophages conditioning the culture medium. Detection of release of AIFIA required at least 10(4) macrophages/ml, and increased release was noted with increased concentrations of cells. This release was enhanced by CSF and was induced by CSF from concentrations of 10(3) macrophages/ml, from which constitutive release of AIFIA was not detected. Increased concentrations of CSF induced increased release of AIFIA. The inducing effect was removed by pretreating CSF with rabbit anti-L cell CSF serum. LF suppressed the constitutive as well as the CSF-induced release of AIFIA, but results were dependent on the relative concentrations of LF and CSF used. The suppressive effects of LF were removed by pretreating LF with goat anti-human LF. Constitutive, but not CSF-induced, release of AIFIA could be ablated by removal of Ia antigen-positive macrophages with low concentrations of monoclonal anti-Ia plus complement. Treating macrophages with higher concentrations of anti-Ia in the absence of complement blocked the LF suppression of constitutive AIFIA release but not the CSF-induction of AIFIA release. Release of AIFIA from mouse macrophages can be modulated by CSF and LF. This modulation may be of significance for the regulation of myelopoiesis.  相似文献   
8.
Mannose 6-phosphate receptor dependent secretion of lysosomal enzymes.   总被引:13,自引:2,他引:11       下载免费PDF全文
BHK and mouse L cells transfected with the cDNA for the human 46 kd mannose 6-phosphate receptor (MPR 46) secrete excessive amounts of newly synthesized mannose 6-phosphate containing polypeptides. The secretion is dependent on the amount, the recycling and the affinity for ligands of MPR 46. Incubation of transfected cells with antibodies blocking the binding site of MPR 46 reduces the secretion, and cotransfection with the cDNA for the human 300 kd mannose 6-phosphate (MPR 300) restores it to normal values. These results indicate that the two mannose 6-phosphate receptors compete for binding of newly synthesized ligands. In contrast to ligands bound to MPR 300, those bound to the MPR 46 are transported to and released at a site, e.g. early endosomes or plasma membrane, from where they can exit into the medium. Since antibodies blocking the binding site of MPR 46 reduce secretion also in non-transfected BHK and mouse L cells, at least part of the basal secretion of M6P-containing polypeptides is mediated by the endogenous MPR 46.  相似文献   
9.
Polyethylene terephthalate (PET) hydrolase enzymes show promise for enzymatic PET degradation and green recycling of single-use PET vessels representing a major source of global pollution. Their full potential can be unlocked with enzyme engineering to render activities on recalcitrant PET substrates commensurate with cost-effective recycling at scale. Thermostability is a highly desirable property in industrial enzymes, often imparting increased robustness and significantly reducing quantities required. To date, most engineered PET hydrolases show improved thermostability over their parental enzymes. Here, we report engineered thermostable variants of Ideonella sakaiensis PET hydrolase enzyme (IsPETase) developed using two scaffolding strategies. The first employed SpyCatcher-SpyTag technology to covalently cyclize IsPETase, resulting in increased thermostability that was concomitant with reduced turnover of PET substrates compared to native IsPETase. The second approach using a GFP-nanobody fusion protein (vGFP) as a scaffold yielded a construct with a melting temperature of 80°C. This was further increased to 85°C when a thermostable PETase variant (FAST PETase) was scaffolded into vGFP, the highest reported so far for an engineered PET hydrolase derived from IsPETase. Thermostability enhancement using the vGFP scaffold did not compromise activity on PET compared to IsPETase. These contrasting results highlight potential topological and dynamic constraints imposed by scaffold choice as determinants of enzyme activity.  相似文献   
10.
The interleukin-2 receptor (IL-2R) is composed of at least three cell surface subunits, IL-2R alpha, IL-2R beta, and IL-2R gamma c. On activated T-cells, the alpha- and beta-subunits exist as a preformed heterodimer that simultaneously captures the IL-2 ligand as the initial event in formation of the signaling complex. We used BIAcore to compare the binding of IL-2 to biosensor surfaces containing either the alpha-subunit, the beta-subunit, or both subunits together. The receptor ectodomains were immobilized in an oriented fashion on the dextran matrix through unique solvent-exposed thiols. Equilibrium analysis of the binding data established IL-2 dissociation constants for the individual alpha- and beta-subunits of 37 and 480 nM, respectively. Surfaces with both subunits immobilized, however, contained a receptor site of much higher affinity, suggesting the ligand was bound in a ternary complex with the alpha- and beta-subunits, similar to that reported for the pseudo-high-affinity receptor on cells. Because the binding responses had the additional complexity of being mass transport limited, obtaining accurate estimates for the kinetic rate constants required global fitting of the data sets from multiple surface densities of the receptors. A detailed kinetic analysis indicated that the higher-affinity binding sites detected on surfaces containing both alpha- and beta-subunits resulted from capture of IL-2 by a preformed complex of these subunits. Therefore, the biosensor analysis closely mimicked the recognition properties reported for these subunits on the cell surface, providing a convenient and powerful tool to assess the structure-function relationships of this and other multiple subunit receptor systems.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号