首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   70篇
  免费   3篇
  2021年   3篇
  2017年   1篇
  2015年   3篇
  2014年   3篇
  2013年   3篇
  2012年   8篇
  2011年   3篇
  2010年   4篇
  2009年   2篇
  2008年   3篇
  2007年   3篇
  2006年   2篇
  2005年   5篇
  2004年   4篇
  2003年   2篇
  2002年   5篇
  2001年   4篇
  2000年   4篇
  1999年   2篇
  1993年   1篇
  1992年   1篇
  1990年   1篇
  1988年   1篇
  1987年   1篇
  1986年   2篇
  1984年   1篇
  1979年   1篇
排序方式: 共有73条查询结果,搜索用时 31 毫秒
1.
Molecular Biology Reports - Yellow vein mosaic disease is the major biotic constraint of okra cultivation in Sri Lanka. Identification and detailed molecular characterization of associated pathogen...  相似文献   
2.
3.
Victims of snakebite quickly succumb to severe respiratory failure, which can be fatal if left untreated. One of the most toxic components of snake venom is phospholipase A2 (PLA2; EC 3.1.1.4). PLA2 isolated from the elapid, Naja sputatrix, induced pulmonary inflammation and edema when administered intravenously and intratracheally to rats. Analysis of pulmonary gene expression profiles using oligonucleotide microarrays revealed 60 genes whose expression was altered by at least 3-fold in response to intratracheal instillation of PLA2 for 3 h as compared with controls. In addition to genes encoding cytokines and chemokines responsible for inflammatory processes, the Na+/K+-ATPase gene has been found to be involved in edema formation. Real-time PCR, Western blot, and immunohistochemical analyses confirmed that the expression of AQP1 and AQP5 mRNAs and proteins was decreased. Besides providing an experimental model for studies on the pathophysiology of the lung, this investigation yields a clue to the mechanisms by which endogenous PLA2s could mediate inflammation in conditions such as allergy and rheumatoid arthritis.  相似文献   
4.
5.
The original hygiene hypothesis suggests that early childhood respiratory infections preceding allergen exposure may decrease the prevalence of allergic diseases. We have recently demonstrated that Mycoplasma pneumoniae infection preceding allergen exposure reduced allergic responses in mice. However, the molecular mechanisms underlying the protective role of M. pneumoniae in allergic responses, particularly airway mucin production, remain unclear. Wild-type and Toll-like receptor 2 (TLR2)-deficient mice with a respiratory M. pneumoniae infection preceding allergen (ovalbumin) challenge were utilized to determine the regulatory role of TLR2-IFN-gamma signaling pathway in airway mucin expression. Furthermore, air-liquid interface cultures of mouse primary tracheal epithelial cells were performed to examine the effects of IFN-gamma on mucin expression. In wild-type mice, M. pneumoniae infection preceding allergen challenge significantly reduced airway mucins but increased IFN-gamma. In sharp contrast, in TLR2-deficient mice, M. pneumoniae preceding allergen challenge resulted in increased mucin protein without a noticeable change of IFN-gamma. In cultured mouse primary tracheal epithelial cells, IFN-gamma was shown to directly inhibit mucin expression in a dose-dependent manner. Our study demonstrates for the first time that a respiratory M. pneumoniae infection preceding allergen challenge reduces airway epithelial mucin expression in part through TLR2-IFN-gamma signaling pathway. A bacterial infection in asthmatic subjects with weakened TLR2-IFN-gamma signaling may result in an exaggerated airway mucin production.  相似文献   
6.
Stroke is one of the leading causes of death and disability worldwide. There are two major types of stroke: cerebral ischemia caused by obstruction of blood vessels in the brain and haemorrhagic stroke that is triggered by the disruption of blood vessels. Thrombolytic therapy involving recombinant tissue plasminogen activator (rtPA) has been shown to be beneficial only when used within 4.5 hours of onset of acute ischemic stroke. rtPA treatment beyond this time window has been found to be unsuitable and usually resulting in haemorrhagic transformation. Stroke is a multifactorial disease that forms a possible end state for majority of patients suffering from diabetes, atherosclerosis and hypertension which are known risk factors. Although the biochemistry of stroke and related diseases is quite well understood, the knowledge on the molecular mechanisms underlying these diseases is still at its infancy. microRNAs that form a unique class of endogenous riboregulators of gene function, offer tremendous potential in unraveling the mechanisms underlying stroke pathogenesis. microRNA expression also reflects the response of individuals to drugs and therapy. Several microRNAs and their target genes, known to be involved in endothelial dysfunction, dysregulation of neurovascular integrity, edema formation, pro-apoptosis, inflammation and extra-cellular matrix remodeling contribute to the critical processes in the pathogenesis of stroke. In this review, we will also be discussing the role of microRNAs as possible diagnostic and prognostic biomarkers as well as potential therapeutic targets in stroke pathogenesis.  相似文献   
7.
Although inhibition of the ubiquitin proteasome system has been postulated to play a key role in the pathogenesis of neurodegenerative diseases, studies have also shown that proteasome inhibition can induce increased expression of neuroprotective heat-shock proteins (HSPs). The global gene expression of primary neurons in response to treatment with the proteasome inhibitor lactacystin was studied to identify the widest range of possible pathways affected. Our results showed changes in mRNA abundance, both at different time points after lactacystin treatment and at different lactacystin concentrations. Genes that were differentially up-regulated at the early time point but not when most cells were undergoing apoptosis might be involved in an attempt to reverse proteasome inhibitor-mediated apoptosis and include HSP70, HSP22 and cell cycle inhibitors. The up-regulation of HSP70 and HSP22 appeared specific towards proteasome inhibitor-mediated cell death. Overexpression of HSP22 was found to protect against proteasome inhibitor-mediated loss of viability by up to 25%. Genes involved in oxidative stress and the inflammatory response were also up-regulated. These data suggest an initial neuroprotective pathway involving HSPs, antioxidants and cell cycle inhibitors, followed by a pro-apoptotic response possibly mediated by inflammation, oxidative stress and aberrant activation of cell cycle proteins.  相似文献   
8.
9.
Taking an innovative approach, a vaccination study using five bacterial strains viz. Vibrio campbelli (B60), V. alginolyticus (B73), V. parahaemolyticus-like (B79), V. parahaemolyticus (R8) and V. harveyi (RG203) was conducted in Penaeus monodon against white spot syndrome virus (WSSV) infection, considered as one of the serious pathogens of shrimps. Oral challenge with shrimps infected with WSSV showed a relative percentage survival of 5 and 47% in the P. monodon juveniles vaccinated with V. parahaemolyticus and V. harveyi, respectively. Results showed that there is a possibility of specifically immunising the shrimps against WSSV using bacterin prepared out of Vibrio harveyi isolates taken from shrimps infected with WSSV. Also, there was a level of protection attained by the shrimps due to immunisation with Vibrio strains.  相似文献   
10.
In prior studies, we demonstrated that 1) CXCL1/KC is essential for NF-κB and MAPK activation and expression of CXCL2/MIP-2 and CXCL5/LPS-induced CXC chemokine in Klebsiella-infected lungs, and 2) CXCL1 derived from hematopoietic and resident cells contributes to host immunity against Klebsiella. However, the role of CXCL1 in mediating neutrophil leukotriene B(4) (LTB(4)), reactive oxygen species (ROS), and reactive nitrogen species (RNS) production is unclear, as is the contribution of these factors to host immunity. In this study, we investigated 1) the role of CXCL1 in LTB(4), NADPH oxidase, and inducible NO synthase (iNOS) expression in lungs and neutrophils, and 2) whether LTB(4) postinfection reverses innate immune defects in CXCL1(-/-) mice via regulation of NADPH oxidase and iNOS. Our results demonstrate reduced neutrophil influx, attenuated LTB(4) levels, and decreased ROS and iNOS production in the lungs of CXCL1(-/-) mice after Klebsiella pneumoniae infection. Using neutrophil depletion and repletion, we found that neutrophils are the predominant source of pulmonary LTB(4) after infection. To treat immune defects in CXCL1(-/-) mice, we intrapulmonarily administered LTB(4). Postinfection, LTB(4) treatment reversed immune defects in CXCL1(-/-) mice and improved survival, neutrophil recruitment, cytokine/chemokine expression, NF-κB/MAPK activation, and ROS/RNS production. LTB(4) also enhanced myeloperoxidase, H(2)O(2,) RNS production, and bacterial killing in K. pneumoniae-infected CXCL1(-/-) neutrophils. These novel results uncover important roles for CXCL1 in generating ROS and RNS in neutrophils and in regulating host immunity against K. pneumoniae infection. Our findings suggest that LTB(4) could be used to correct defects in neutrophil recruitment and function in individuals lacking or expressing malfunctional CXCL1.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号