首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12篇
  免费   1篇
  2019年   1篇
  2018年   2篇
  2017年   1篇
  2016年   1篇
  2015年   2篇
  2014年   1篇
  2013年   1篇
  2012年   2篇
  2011年   2篇
排序方式: 共有13条查询结果,搜索用时 31 毫秒
1.
The effects of several physiological parameters on H2 production rate in the unicellular halotolerant cyanobacterium Aphanothece halophytica were investigated. Under nitrogen deprivation, the growth of cells was inhibited, but H2 production rate was enhanced approximately fourfold. Interestingly, cells grown under sulfur deprivation exhibited a decrease in cell growth, H2 production rate, and bidirectional hydrogenase activity. Glucose was the preferred sugar source for H2 production by A. halophytica, but H2 production decreased at high glucose concentrations. H2 production rate was optimum when cells were grown in the presence of 0.75 M?NaCl, or 0.4 μM?Fe3+, or 1 μM?Ni2+. The optimum light intensity and temperature for H2 production were 30 μmol photons m?2?s?1 and 35 °C, respectively. A two-stage culture of A. halophytica was performed in order to overcome the reduction of cell growth in N-free medium. In the first stage, cells were grown in normal medium to accumulate biomass, and in the second stage, H2 production by the obtained biomass was induced by growing cells in N-free medium supplemented with various chemicals for 24 h. A. halophytica grown in N-free medium containing various MgSO4 concentrations had a high H2 production rate between 11.432 and 12.767 μmol H2 mg?chlorophyll a (chl a)?1?h?1, a 30-fold increase compared to cells grown in normal medium. The highest rate of 13.804 μmol H2 mg?chl a ?1?h?1 was obtained when the N-free growth medium contained 0.4 μM Fe3+. These results suggested the possibility of using A. halophytica and some other halotolerant cyanobacteria thriving under extreme environmental conditions in the sea as potential sources for H2 production in the future.  相似文献   
2.
3.
4.
5.
Brown planthopper (BPH) is a destructive insect pest of rice and causes severe yield loss. In attempts to develop a BPH-resistant rice variety, Rathu Heenati (RH), a rice cultivar with a strong BPH resistance, has been used as the donor in breeding programs. Quantitative trait loci analysis was conducted for the area under the curve of BPH damage scores of a backcross (BC3F5) population infested by six different BPH populations. Single nucleotide polymorphism (SNP) markers on chromosome 4, i.e., LecRK2-SNP and LecRK3-SNP, and markers on chromosome 6, i.e., Bph32-SNP and SSR23, were identified to be associated with resistance against five BPH populations. To identify genes on chromosome 6 that are involved in BPH resistance, expression analysis was conducted for genes located in the genomic region of Bph32-SNP and SSR23. Genes that showed differential expression ofRH at 24 h after BPH infestation, when compared to an RH control, were identified. Those that encode proteins putatively involved in the BPH resistance mechanism are LOC_Os06g03240, LOC_Os06g03380, LOC_Os06g03486, LOC_Os06g03514, LOC_Os06g03520, LOC_Os06g03610, LOC_Os06g03676, and LOC_Os06g03890. SNP markers were developed from several differentially expressed genes and were validated by genotyping in the backcross population. The SNP marker developed from LOC_Os06g03514 showed the highest association with BPH resistance and the gene may be involved in the BPH resistance mechanism. This SNP marker will be useful in breeding programs for BPH resistance.  相似文献   
6.
Aromatic rice is an important commodity for international trade, which has encouraged the interest of rice breeders to identify the genetic control of rice aroma. The recessive Os2AP gene, which is located on chromosome 8, has been reported to be associated with rice aroma. The 8-bp deletion in exon 7 is an aromatic allele that is present in most aromatic accessions, including the most popular aromatic rice varieties, Jasmine and Basmati. However, other mutations associated with aroma have been detected, but the other mutations are less frequent. In this study, we report an aromatic allele, a 3-bp insertion in exon 13 of Os2AP, as a major allele found in aromatic rice varieties from Myanmar. The insertion is in frame and causes an additional tyrosine (Y) in the amino acid sequence. However, the mutation does not affect the expression of the Os2AP gene. A functional marker for detecting this allele was developed and tested in an aroma-segregating F(2) population. The aroma phenotypes and genotypes showed perfect co-segregation of this population. The marker was also used for screening a collection of aromatic rice varieties collected from different geographical sites of Myanmar. Twice as many aromatic Myanmar rice varieties containing the 3-bp insertion allele were found as the varieties containing the 8-bp deletion allele, which suggested that the 3-bp insertion allele originated in regions of Myanmar.  相似文献   
7.
8.
The specification of vascular patterning in plants has interested plant biologists for many years. In the last decade a new context has emerged for this interest. Specifically, recent proposals to engineer C4 traits into C3 plants such as rice require an understanding of how the distinctive venation pattern in the leaves of C4 plants is determined. High vein density with Kranz anatomy, whereby photosynthetic cells are arranged in encircling layers around vascular bundles, is one of the major traits that differentiate C4 species from C3 species. To identify genetic factors that specify C4 leaf anatomy, we generated ethyl methanesulfonate‐ and γ‐ray‐mutagenized populations of the C4 species sorghum (Sorghum bicolor), and screened for lines with reduced vein density. Two mutations were identified that conferred low vein density. Both mutations segregated in backcrossed F2 populations as homozygous recessive alleles. Bulk segregant analysis using next‐generation sequencing revealed that, in both cases, the mutant phenotype was associated with mutations in the CYP90D2 gene, which encodes an enzyme in the brassinosteroid biosynthesis pathway. Lack of complementation in allelism tests confirmed this result. These data indicate that the brassinosteroid pathway promotes high vein density in the sorghum leaf, and suggest that differences between C4 and C3 leaf anatomy may arise in part through differential activity of this pathway in the two leaf types.  相似文献   
9.
Vegetable soybean (Glycine max L.) is an important economic and nutritious crop in South and Southeast Asian countries and is increasingly grown in the Western Hemisphere. Aromatic vegetable soybean is a special group of soybean varieties that produce young pods containing a sweet aroma, which is produced mainly by the volatile compound 2-acetyl-1-pyrroline (2AP). Due to the aroma, the aromatic vegetable soybean commands higher market prices and gains wider acceptance from unfamiliar consumers. We have previously reported that the GmAMADH2 gene encodes an AMADH that regulates aroma (2AP) biosynthesis in soybeans (Arikit et al. 2010). A sequence variation involving a 2-bp deletion in exon 10 was found in this gene in all investigated aromatic varieties. In this study, a codominant PCR-based marker for the aroma trait in soybeans was designed based on the 2-bp deletion in GmAMADH2. The marker was verified in five aromatic and five non-aromatic varieties as well as in F2 soybean population segregating for aroma. The aromatic genotype with the 2-bp deletion was completely associated with the five aromatic soybean varieties as well as the aromatic progeny of the F2 population with seeds containing 2AP. Similarly, the non-aromatic genotype was associated with the five non-aromatic varieties and non-aromatic progeny. The perfect co-segregation of the marker genotypes and aroma phenotypes confirmed that the marker could be efficiently used for molecular breeding of soybeans for aroma.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号