首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
  2014年   2篇
  2013年   1篇
  2007年   1篇
  2006年   1篇
排序方式: 共有5条查询结果,搜索用时 15 毫秒
1
1.
Angiogenesis has long been a desired therapeutic approach to improve clinical outcomes of conditions typified by ischemia. Vascular endothelial growth factor (VEGF) has demonstrated the ability to generate new blood vessels in vivo, but trials using intravenous delivery have not yet produced clinical success. Localized, sustained delivery of VEGF has been proven necessary to generate blood vessels as demonstrated by implantable, controlled release devices. Ultimately, nanoparticles delivered by intravenous injection may be designed to accumulate in target tissues and sustain the local VEGF concentration; however, injectable nanosuspensions that control the release of stabilized VEGF must first be developed. In this study, we utilize the heparin binding domain of VEGF to bind the polyanion dextran sulfate, resulting in an enhanced thermal stability of VEGF. Coacervation of the VEGF-bound dextran sulfate with selected polycations (chitosan, polyethylenimine, or poly-L-lysine) produced nanoparticles approximately 250 nm in diameter with high VEGF encapsulation efficiency (50-85%). Release of VEGF from these formulations persisted for >10 days and maintained high VEGF activity as determined by ELISA and a mitogenic bioassay. Chitosan-dextran sulfate complexes were preferred because of their biodegradability, desirable particle size ( approximately 250 nm), entrapment efficiency ( approximately 85%), controlled release (near linear for 10 days), and mitogenic activity.  相似文献   
2.
Vitharana SN  Wilson GS 《Genomics》2006,87(1):158-164
The two main shortcomings of the state-of-the-art method of sorting chromosomes, specificity and the efficiency of fractionating a significant amount of chromosomes, are addressed by this work in the design of a massively parallel approach using magnetic beads binding to a chromosome-specific DNA probe. In an attempt to isolate human chromosome 15 from a lymphoblastoid cell line, a chromosome 15 centromere-specific DNA probe with a fluorescent tag attached was reacted with the chromosomes. Magnetic beads bound to anti-FITC antibody were reacted with the labeled pool of chromosomes and separated by exposure to a magnetic field. The specificity of the fractionated pool was verified by performing fluorescence in situ hybridization on the isolated pool. The chromosome of interest could be enriched to about 75% within a maximum of 3-4 days, regardless of the amount of material.  相似文献   
3.
The Interleukin (IL)-12 family contains several heterodimeric composite cytokines which share subunits among each other. IL-12 consists of the subunits p40 (shared with IL-23) and p35. p35 is shared with the composite cytokine IL-35 which comprises of the p35/EBI3 heterodimer (EBI3 shared with IL-27). IL-35 signals via homo- or heterodimers of IL-12Rβ2, gp130 and WSX-1, which are shared with IL-12 and IL-27 receptor complexes, respectively. p35 was efficiently secreted in complex with p40 as IL-12 but not with EBI3 as IL-35 in several transfected cell lines tested which complicates the analysis of IL-35 signal transduction. p35 and p40 but not p35 and EBI3 form an inter-chain disulfide bridge. Mutation of the responsible cysteine residue (p40C197A) reduced IL-12 formation and activity only slightly. Importantly, the p40C197A mutation prevented the formation of antagonistic p40 homodimers which enabled the in vitro reconstitution of biologically active IL-12 with p35 produced in bacteria (p35bac). Reconstitution of IL-35 with p35bac and EBI3 did, however, fail to induce signal transduction in Ba/F3 cells expressing IL-12Rβ2 and gp130. In summary, we describe the in vitro reconstitution of IL-12, but fail to produce recombinant IL-35 by this novel approach.  相似文献   
4.
Ciliary neurotrophic factor (CNTF) is a neurotrophic factor with therapeutic potential for neurodegenerative diseases. Moreover, therapeutic application of CNTF reduced body weight in mice and humans. CNTF binds to high or low affinity receptor complexes consisting of CNTFR·gp130·LIFR or IL-6R·gp130·LIFR, respectively. Clinical studies of the CNTF derivative Axokine revealed intolerance at higher concentrations, which may rely on the low-affinity binding of CNTF to the IL-6R. Here, we aimed to generate a CNTFR-selective CNTF variant (CV). CV-1 contained the single amino acid exchange R28E. Arg28 is in close proximity to the CNTFR binding site. Using molecular modeling, we hypothesized that Arg28 might contribute to IL-6R/CNTFR plasticity of CNTF. CV-2 to CV-5 were generated by transferring parts of the CNTFR-binding site from cardiotrophin-like cytokine to CNTF. Cardiotrophin-like cytokine selectively signals via the CNTFR·gp130·LIFR complex, albeit with a much lower affinity compared with CNTF. As shown by immunoprecipitation, all CNTF variants retained the ability to bind to CNTFR. CV-1, CV-2, and CV-5, however, lost the ability to bind to IL-6R. Although all variants induced cytokine-dependent cellular proliferation and STAT3 phosphorylation via CNTFR·gp130·LIFR, only CV-3 induced STAT3 phosphorylation via IL-6R·gp130·LIFR. Quantification of CNTF-dependent proliferation of CNTFR·gp130·LIFR expressing cells indicated that only CV-1 was as biologically active as CNTF. Thus, the CNTFR-selective CV-1 will allow discriminating between CNTFR- and IL-6R-mediated effects in vivo.  相似文献   
5.
Interleukin 6 (IL-6) signaling plays a role in inflammation, cancer, and senescence. Here, we identified soluble IL-6 receptor (sIL-6R) as a member of the senescence-associated secretory phenotype (SASP). Senescence-associated sIL-6R upregulation was mediated by mammalian target of rapamycin (mTOR). sIL-6R was mainly generated by a disintegrin and metalloprotease 10 (ADAM10)-dependent ectodomain shedding to enable IL-6 trans-signaling. In vivo, heterozygous PTEN-knockout mice exhibited higher mTOR activity and increased sIL-6R levels. Moreover, aberrant EGF receptor (EGFR) activation triggered IL-6 synthesis. In analogy to senescence, EGFR-induced activation of mTOR also induced IL-6R expression and sIL-6R generation. Hence, mTOR activation reprograms IL-6 non-responder cells into IL-6 responder cells. Our data suggest that mTOR serves as a central molecular switch to facilitate cellular IL-6 classic and trans-signaling via IL-6R upregulation with direct implications for cellular senescence and tumor development.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号