全文获取类型
收费全文 | 202篇 |
免费 | 20篇 |
国内免费 | 3篇 |
专业分类
225篇 |
出版年
2023年 | 1篇 |
2022年 | 2篇 |
2021年 | 4篇 |
2019年 | 1篇 |
2018年 | 1篇 |
2017年 | 4篇 |
2016年 | 2篇 |
2015年 | 6篇 |
2014年 | 6篇 |
2013年 | 14篇 |
2012年 | 9篇 |
2011年 | 12篇 |
2010年 | 17篇 |
2009年 | 13篇 |
2008年 | 12篇 |
2007年 | 11篇 |
2006年 | 5篇 |
2005年 | 5篇 |
2004年 | 7篇 |
2003年 | 6篇 |
2002年 | 3篇 |
2001年 | 9篇 |
2000年 | 5篇 |
1999年 | 4篇 |
1998年 | 9篇 |
1997年 | 6篇 |
1996年 | 4篇 |
1995年 | 5篇 |
1994年 | 3篇 |
1993年 | 4篇 |
1992年 | 4篇 |
1991年 | 5篇 |
1990年 | 4篇 |
1989年 | 4篇 |
1988年 | 1篇 |
1987年 | 2篇 |
1986年 | 3篇 |
1985年 | 2篇 |
1983年 | 2篇 |
1981年 | 1篇 |
1980年 | 2篇 |
1979年 | 2篇 |
1977年 | 2篇 |
1968年 | 1篇 |
排序方式: 共有225条查询结果,搜索用时 15 毫秒
1.
YVONNE BHAUD MARIE-LINE GÉRAUD JÉRME AUSSEIL MARIE-ODILE SOYER-GOBILLARD HERVE MOREAU 《The Journal of eukaryotic microbiology》1999,46(3):259-267
Nuclei of the dinoflagellate Crypthecodinium cohnii strain Whd were isolated and nuclear proteins were extracted in three fractions, corresponding to the increasing affinity of these proteins to genomic DNA. One fraction contained two major bands (48- and 46-kDa) and antibodies specific to this fraction revealed two major bands by Western blot on nuclear extracts, corresponding to the 46- and 48-kDa bands. The 48-kDa protein was detected in G1 phase but not in M phase cells. An expression cDNA library of C. cohnii was screened with these antibodies, and two different open reading frames were isolated. Dinoflagellate nuclear associated protein (Dinap1), one of these coding sequences, was produced in E. coli and appeared to correspond to the 48-kDa nuclear protein. No homologue of this sequence was found in the data bases, but two regions were identified, one including two putative zinc finger repeats, and one coding for two potential W/W domains. The second coding sequence showed a low similarity to non-specific sterol carrier proteins. Immunocytolocalization with specific polyclonal antibodies to recombinant Dinap1 showed that the nucleus was immunoreactive only during the G1 phase: the nucleoplasm was immunostained, while chromosome cores and nuclear envelopes were negative. 相似文献
2.
3.
Photoaffinity labeling with [32P] 8-azidoadenosine 5-triphosphate (8-N3ATP) was used to identify putative binding sites on tobacco (Nicotiana tabacum L. and N. rustica L.) leaf ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBPCase, EC 4.1.1.39). Incorporation of 32P was observed in polypeptides corresponding to both RuBPCase subunits when desalted leaf and chloroplast extracts, and purified RuBPCase were irradiated with ultraviolet light in the presence of [32P] 8-N3ATP. 32P-labeling was dependent upon ultraviolet irradiation and occurred with [32P] 8-N3ATP labeled in the -position, indicating covalent incorporation of the photoprobe. Both [32P] 8-N3ATP and [32P] 8-N3GTP were incorporated to a similar extent into the 53-kilodalton (kDa) large subunit (LSu), but incorporation of [32P] 8-N3GTP into the 14-kDa small subunit (SSu) of RuBPCase was <5% of that measured with [32P] 8-N3ATP. Distinct binding sites for 8-N3ATP on the two subunits were indicated by different apparent K
D
values, 3 and 18 M for the SSu and LSu, respectively, and differences in the response of photoaffinity labeling to Mg2+, anions and enzyme activation. Active-site-directed compounds, including the non-gaseous substrate ribulose 1,5-bisphosphate, the reaction intermediate analog 2-carboxyarabinitol-1,5-bisphosphate and several phosphorylated effectors afforded protection to the LSu site against photoincorporation but provided almost no protection to the SSu. These results indicate that 8-N3ATP binds to the active-site region of the LSu and a distinct site on the SSu of RuBPCase. Experiments conducted with intact pea (Pisum sativum L.) and tobacco chloroplasts showed that the SSu was not photolabeled with [32P] 8-N3ATP in organello or in undesalted chloroplast lysates but was photolabeled when lysates were ultrafiltered or desalted. These results indicate that 8-N3ATP binds to a site on the SSu that has physiological significance.Abbreviations kDa
kilodalton
- LSu
large subunit
- 8-N3ATP
8-azidoadenosine 5-triphosphate
- RuBP
ribulose-1,5-bisphosphate
- RuBPCase
ribulose-1,5-bisphosphate carboxylase/oxygenase
- SSu
small subunit
Kentucky Agricultural Experiment Station Journal Article No. 89-3-150The authors acknowledge the technical assistance of J.C. Anderson. This work was supported in part by National Institute of Health grant GM 35766 to B.E.H. 相似文献
4.
A brief history of Rubisco (ribulose bisphosphate carboxylase oxygenase) research and the events leading to the discovery
and initial characterization of Rubisco activase are described. Key to the discovery was the chance isolation of a novel Arabidopsis photosynthesis mutant. The characteristics of the mutant suggested that activation of Rubisco was not a spontaneous process
in vivo, but involved a heritable factor. The search for the putative factor by 2D electrophoresis identified two polypeptides, genetically
linked to Rubisco activation, that were missing in chloroplasts from the mutant. An assay for the activity of these polypeptides,
which were given the name Rubisco activase, was developed after realizing the importance of including ribulose bisphosphate
(RuBP) in the assay. The requirement for ATP and the subsequent identification of activase as an ATPase came about fortuitously,
the result of a RuBP preparation that was contaminated with adenine nucleotides. Finally, the ability of activase to relieve
inhibition of the endogenous Rubisco inhibitor, 2-carboxyarabinitol 1-phosphate, provided an early indication of the mechanism
by which activase regulates Rubisco.
This revised version was published online in June 2006 with corrections to the Cover Date. 相似文献
5.
Exceptional Sensitivity of Rubisco Activase to Thermal Denaturation in Vitro and in Vivo 总被引:12,自引:0,他引:12
Michael E. Salvucci Katherine W. Osteryoung Steven J. Crafts-Brandner Elizabeth Vierling 《Plant physiology》2001,127(3):1053-1064
Heat stress inhibits photosynthesis by reducing the activation of Rubisco by Rubisco activase. To determine if loss of activase function is caused by protein denaturation, the thermal stability of activase was examined in vitro and in vivo and compared with the stabilities of two other soluble chloroplast proteins. Isolated activase exhibited a temperature optimum for ATP hydrolysis of 44 degrees C compared with > or =60 degrees C for carboxylation by Rubisco. Light scattering showed that unfolding/aggregation occurred at 45 degrees C and 37 degrees C for activase in the presence and absence of ATPgammaS, respectively, and at 65 degrees C for Rubisco. Addition of chemically denatured rhodanese to heat-treated activase trapped partially folded activase in an insoluble complex at treatment temperatures that were similar to those that caused increased light scattering and loss of activity. To examine thermal stability in vivo, heat-treated tobacco (Nicotiana rustica cv Pulmila) protoplasts and chloroplasts were lysed with detergent in the presence of rhodanese and the amount of target protein that aggregated was determined by immunoblotting. The results of these experiments showed that thermal denaturation of activase in vivo occurred at temperatures similar to those that denatured isolated activase and far below those required to denature Rubisco or phosphoribulokinase. Edman degradation analysis of aggregated proteins from tobacco and pea (Pisum sativum cv "Little Marvel") chloroplasts showed that activase was the major protein that denatured in response to heat stress. Thus, loss of activase activity during heat stress is caused by an exceptional sensitivity of the protein to thermal denaturation and is responsible, in part, for deactivation of Rubisco. 相似文献
6.
Net photosynthesis in the submersed angiosperms Myriophyllum spicatum L. and Hydrilla verticillata (L.f.) Royal was inhibited by 21% O2, but the degree of inhibition was greater for plants in the high than in the low photorespiratory state. Increasing the CO2 concentration from 50 through 2,500 l l-1 decreased the O2 inhibition of the high-photorespiration plants in a competitive manner, but it had no effect on the O2 inhibition of plants in the low photorespiratory state. Carbonic-anhydrase activity increased by almost threefold with the induction of the low photorespiratory state. Ethoxyzolamide, an inhibitor of carbonic anhydrase, reduced the net photosynthesis of low-photorespiration Myriophyllum and Hydrilla plants by 40%, but their dark respiration was unaffected. This ethoxyzolamide inhibition of net photosynthesis exhibited a competitive response to CO2 concentration, resulting in a decrease in the apparent affinity of photosynthesis for CO2. The net photosynthesis of plants in the high photorespiratory state was inhibited only slightly by ethoxyzolamide, and this inhibition was independent of the CO2 level. Ethoxyzolamide treatment caused an increase in the O2 inhibition of net photosynthesis of plants in the low photorespiratory state. Ethoxyzolamide increased the low CO2 compensation points of low-photorespiration Myriophyllum and Hydrilla, but the values for the high-photorespiration plants were unchanged. In comparison, the CO2 compensation points of the terrestrial plants Sorghum bicolor (C4), Moricandia arvensis (C3-C4 intermediate) and Nicotiana tabacum (C3) were unaltered by ethoxyzolamide treatment. These data indicate that the low photorespiratory state in Myriophyllum and Hydrilla is repressed by ethoxyzolamide treatment, thus implicating carbonic anhydrase as a component of the photorespiration-reducing mechanism in these plants. The competitive interaction of CO2 with ethoxyzolamide provides evidence that the low photorespiratory state in submersed angiosperms is the result of some type or types of CO2 concentrating mechanism. In Myriophyllum it may be via bicarbonate utilization, but in Hydrilla it probably takes the form of an inducible C4-type system.Abbreviations PEP
phosphoenolpyruvate
- RuBP
ribulose bisphosphate 相似文献
7.
每搏量变异度是动态的容量监测指标.机械通气患者心肺的相互作用是每搏量变异度的产生基础,通过动脉压力波形分析技术可以进行连续监测.每搏量变异度能够准确预测容量治疗反应,与静态的血流动力学参数相比,对于优化心输出量和组织氧供更有优势,但也存在一定的局限性.每搏量变异度受多种因素影响且不能用于自主呼吸和心律失常的患者.临床应用时应该综合考虑其影响因素,结合其他的指标和方法指导容量治疗. 相似文献
8.
Physical and Kinetic Evidence for an Association between Sucrose-Phosphate Synthase and Sucrose-Phosphate Phosphatase 总被引:7,自引:0,他引:7
下载免费PDF全文

The possible formation of a multienzyme complex between sucrose (Suc)-phosphate synthase (SPS) and Suc-phosphate phosphatase (SPP) was examined by measuring the rates of Suc-6-phosphate (Suc-6-P) synthesis and hydrolysis in mixing experiments with partially purified enzymes from spinach (Spinacia oleracea) and rice (Oryza sativa) leaves. The addition of SPP to SPS stimulated the rate of Suc-6-P synthesis. SPS inhibited the hydrolysis of exogenous Suc-6-P by SPP when added in the absence of its substrate (i.e. UDP-glucose) but stimulated SPP activity when the SPS substrates were present and used to generate Suc-6-P directly in the reaction. Results from isotope-dilution experiments suggest that Suc-6-P was channeled between SPS and SPP. A portion of the SPS activity comigrated with SPP during native polyacrylamide gel electrophoresis, providing physical evidence for an enzyme-enzyme interaction. Taken together, these results strongly suggest that SPS and SPP associate to form a multienzyme complex. 相似文献
9.
VIVIANE LANQUAR ASTRID AGORIO JÉRÔME GIRAUDAT THOMAS ROACH ANJA KRIEGER‐LISZKAY SÉBASTIEN THOMINE 《Plant, cell & environment》2013,36(4):804-817
Cadmium (Cd) is highly toxic to plants causing growth reduction and chlorosis. It binds thiols and competes with essential transition metals. It affects major biochemical processes such as photosynthesis and the redox balance, but the connection between cadmium effects at the biochemical level and its deleterious effect on growth has seldom been established. In this study, two Cd hypersensitive mutants, cad1‐3 impaired in phytochelatin synthase (PCS1), and nramp3nramp4 impaired in release of vacuolar metal stores, have been compared. The analysis combines genetics with measurements of photosynthetic and antioxidant functions. Loss of AtNRAMP3 and AtNRAMP4 function or of PCS1 function leads to comparable Cd sensitivity. Root Cd hypersensitivities conferred by cad1‐3 and nramp3nramp4 are cumulative. The two mutants contrast in their tolerance to oxidative stress. In nramp3nramp4, the photosynthetic apparatus is severely affected by Cd, whereas it is much less affected in cad1‐3. In agreement with chloroplast being a prime target for Cd toxicity in nramp3nramp4, the Cd hypersensitivity of this mutant is alleviated in the dark. The Cd hypersensitivity of nramp3nramp4 mutant highlights the critical role of vacuolar metal stores to supply essential metals to plastids and maintain photosynthetic function under Cd and oxidative stresses. 相似文献
10.