首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13篇
  免费   0篇
  2022年   1篇
  2020年   1篇
  2018年   1篇
  2013年   3篇
  2012年   3篇
  2010年   1篇
  2009年   1篇
  2005年   1篇
  1965年   1篇
排序方式: 共有13条查询结果,搜索用时 15 毫秒
1.
The cytochrome b 6 f complex of oxygenic photosynthesis produces substantial levels of reactive oxygen species (ROS). It has been observed that the ROS production rate by b 6 f is 10–20 fold higher than that observed for the analogous respiratory cytochrome bc1 complex. The types of ROS produced (O2??, 1O2, and, possibly, H2O2) and the site(s) of ROS production within the b 6 f complex have been the subject of some debate. Proposed sources of ROS have included the heme b p , PQ p ?? (possible sources for O2??), the Rieske iron–sulfur cluster (possible source of O2?? and/or 1O2), Chl a (possible source of 1O2), and heme c n (possible source of O2?? and/or H2O2). Our working hypothesis is that amino acid residues proximal to the ROS production sites will be more susceptible to oxidative modification than distant residues. In the current study, we have identified natively oxidized amino acid residues in the subunits of the spinach cytochrome b 6 f complex. The oxidized residues were identified by tandem mass spectrometry using the MassMatrix Program. Our results indicate that numerous residues, principally localized near p-side cofactors and Chl a, were oxidatively modified. We hypothesize that these sites are sources for ROS generation in the spinach cytochrome b 6 f complex.  相似文献   
2.
The structural association of the spinach 17-kDa extrinsic protein of photosystem II with other extrinsic and membrane-bound components of the photosystem was investigated by labeling the 17-kDa extrinsic protein with the amino-group-specific reagent N-hydroxysuccinimidobiotin both on intact photosystem II membranes or as a free protein in solution. After isolation of the biotinylated molecules, the modified 17-kDa proteins were allowed to rebind to photosystem II membranes which were depleted of the 17-kDa component. Differential binding of the protein biotinylated in solution compared to unmodified 17-kDa protein or 17-kDa protein modified on PS II membranes was observed. This indicated possible steric or ionic interference because of biotinylated lysyl residues present on the protein modified in solution. Biotinylated sites on the different modified 17-kDa proteins were identified by trypsin and Staphylococcus V8 protease digestion, followed by affinity chromatography enrichment of the biotinylated peptides and analysis of the peptide fragment mixture by nanospray liquid chromatography-tandem mass spectrometry. Four lysyl residues that were modified when the protein was biotinylated in solution were not biotinylated when the protein was modified on the PS II membrane (90K, 96K, 101K, and 102K). These residues appear to identify a protein domain involved in the interaction of the 17-kDa protein with the other components of the photosystem.  相似文献   
3.
Photosystem II uses water as an enzymatic substrate. It has been hypothesized that this water is vectored to the active site for water oxidation via water channels that lead from the surface of the protein complex to the Mn4O5Ca metal cluster. The radiolysis of water by synchrotron radiation produces amino acid residue-modifying OH and is a powerful technique to identify regions of proteins that are in contact with water. In this study, we have used this technique to oxidatively modify buried amino acid residues in higher plant Photosystem II membranes. Fourier transform ion cyclotron resonance mass spectrometry was then used to identify these oxidized amino acid residues that were located in several core Photosystem II subunits (D1, D2, CP43, and CP47). While, as expected, the majority of the identified oxidized residues (≈75%) are located on the solvent-exposed surface of the complex, a number of buried residues on these proteins were also modified. These residues form groups which appear to lead from the surface of the complex to the Mn4O5Ca cluster. These residues may be in contact with putative water channels in the photosystem. These results are discussed within the context of a number of largely computational studies that have identified putative water channels in Photosystem II.  相似文献   
4.
As a light-driven water-plastoquinone oxidoreductase, Photosystem II produces molecular oxygen as an enzymatic product. Additionally, under a variety of stress conditions, reactive oxygen species are produced at or near the active site for oxygen evolution. In this study, Fourier-transform ion cyclotron resonance mass spectrometry was used to identify oxidized amino acid residues located in several core Photosystem II proteins (D1, D2, CP43, and CP47) isolated from spinach Photosystem II membranes. While the majority of these oxidized residues (81%) are located on the oxygenated solvent-exposed surface of the complex, several residues on the CP43 protein ((354)E, (355)T, (356)M, and (357)R) which are in close proximity (<15 ?) to the Mn(4)CaO(5) active site are also modified. These residues appear to be associated with putative oxygen/reactive oxygen species exit channel(s) in the photosystem. These results are discussed within the context of a number of computational studies which have identified putative oxygen channels within the photosystem.  相似文献   
5.
Histone H1 is commonly used to assay kinase activity in vitro. As many promising targeted therapies affect kinase activity of specific enzymes involved in cancer transformation, H1 phosphorylation can serve as potential pharmacodynamic marker for drug activity within the cell. In this study we utilized a phosphoproteomic workflow to characterize histone H1 phosphorylation changes associated with two targeted therapies in the Kasumi-1 acute myeloid leukemia cell line. The phosphoproteomic workflow was first validated with standard casein phosphoproteins and then applied to the direct analysis of histone H1 from Kasumi-1 nuclear lysates. Ten H1 phosphorylation sites were identified on the H1 variants, H1.2, H1.3, H1.4, H1.5 and H1.x. LC MS profiling of intact H1s demonstrated global dephosphorylation of H1.5 associated with therapy by the cyclin-dependent kinase inhibitor, flavopiridol and the Heat Shock Protein 90 inhibitor, 17-(Allylamino)-17-demethoxygeldanamycin. In contrast, independent treatments with a nucleotide analog, proteosome inhibitor and histone deacetylase inhibitor did not exhibit decreased H1.5 phosphorylation. The data presented herein demonstrate that potential of histones to assess the cellular response of reagents that have direct and indirect effects on kinase activity that alters histone phosphorylation. As such, this approach may be a highly informative marker for response to targeted therapies influencing histone phosphorylation.  相似文献   
6.
A novel hierarchical MS2/MS3 database search algorithm has been developed to analyze MS2/MS3 phosphopeptides proteomic data. The algorithm is incorporated in an automated database search program, MassMatrix. The algorithm matches experimental MS2 spectra against a supplied protein database to determine candidate peptide matches. It then matches the corresponding experimental MS3 spectra against those candidate peptide matches. The MS2 and MS3 spectra are used in concert to arrive at peptide matches with overall higher confidence rather than combining MS2 and MS3 data searched separately. Receiver operating characteristic analysis showed that hierarchical MS2/MS3 database searches with MassMatrix had better sensitivity and specificity than the two‐stage MS2/MS3 database searches obtained with MassMatrix, MASCOT, and X!Tandem. A greater number of true peptide matches at a given false rate were identified by use of this new algorithm for data collected on both LCQ and LTQ‐FTICR mass spectrometers. The additional MS3 spectral data also improved the overall reliability and the number of true positives (TPs) due to the fact that the TPs of the MS2/MS3 search results had higher scores than those of the MS2.  相似文献   
7.
Under a variety of stress conditions, Photosystem II produces reactive oxygen species on both the reducing and oxidizing sides of the photosystem. A number of different sites including the Mn4O5Ca cluster, P680, PheoD1, QA, QB and cytochrome b559 have been hypothesized to produce reactive oxygen species in the photosystem. In this communication using Fourier-transform ion cyclotron resonance mass spectrometry we have identified several residues on the D1 and D2 proteins from spinach which are oxidatively modified and in close proximity to QA (D1 residues 239F, 241Q, 242E and the D2 residues 238P, 239T, 242E and 247M) and PheoD1 (D1 residues 130E, 133L and 135F). These residues may be associated with reactive oxygen species exit pathways located on the reducing side of the photosystem, and their modification may indicate that both QA and PheoD1 are sources of reactive oxygen species on the reducing side of Photosystem II.  相似文献   
8.
The cariogenic bacterium Streptococcus mutans is an important dental pathogen that forms biofilms on tooth surfaces, which provide a protective niche for the bacterium where it secretes organic acids leading to the demineralization of tooth enamel. Lipids, especially glycolipids are likely to be key components of these biofilm matrices. The UA159 strain of S. mutans was among the earliest microorganisms to have its genome sequenced. While the lipids of other S. mutans strains have been identified and characterized, lipid analyses of UA159 have been limited to a few studies on its fatty acids. Here we report the structures of the four major glycolipids from stationary-phase S. mutans UA159 cells grown in standing cultures. These were shown to be monoglucosyldiacylglycerol (MGDAG), diglucosyldiacylglycerol (DGDAG), diglucosylmonoacylglycerol (DGMAG) and, glycerophosphoryldiglucosyldiacylglycerol (GPDGDAG). The structures were determined by high performance thin-layer chromatography, mass spectrometry and nuclear magnetic resonance spectroscopy. The glycolipids were identified by accurate, high resolution, and tandem mass spectrometry. The identities of the sugar units in the glycolipids were determined by a novel and highly efficient NMR method. All sugars were shown to have α-glycosidic linkages and DGMAG was shown to be acylated in the sn-1 position by NMR. This is the first observation of unsubstituted DGMAG in any organism and the first mass spectrometry data for GPDGDAG.  相似文献   
9.
Photosynthesis Research - Under aerobic conditions the production of Reactive Oxygen Species (ROS) by electron transport chains is unavoidable, and occurs in both autotrophic and heterotrophic...  相似文献   
10.
Pyocyanin (1-hydroxy-N-methylphenazine, PCN) is a cytotoxic pigment and virulence factor secreted by the human bacterial pathogen, Pseudomonas aeruginosa. Here, we report that exposure of PCN to airway peroxidases, hydrogen peroxide (H(2)O(2)), and NaNO(2) generates unique mononitrated PCN metabolites (N-PCN) as revealed by HPLC/mass spectrometry analyses. N-PCN, in contrast to PCN, was devoid of antibiotic activity and failed to kill Escherichia coli and Staphylococcus aureus. Furthermore, in contrast to PCN, intratracheal instillation of N-PCN into murine lungs failed to induce a significant inflammatory response. Surprisingly, at a pH of ~7, N-PCN was more reactive than PCN with respect to NADH oxidation but resulted in a similar magnitude of superoxide production as detected by electron paramagnetic resonance and spin trapping experiments. When incubated with Escherichia coli or lung A549 cells, PCN and N-PCN both led to superoxide formation, but lesser amounts were detected with N-PCN. Our results demonstrate that PCN that has been nitrated by peroxidase/H(2)O(2)/NO(2)(-) systems possesses less cytotoxic/proinflammatory activity than native PCN. Yield of N-PCN was decreased by the presence of the competing physiological peroxidase substrates (thiocyonate) SCN(-) (myeloperoxidase, MPO, and lactoperoxidase, LPO) and Cl(-) (MPO), which with Cl(-) yielded chlorinated PCNs. These reaction products also showed decreased proinflammatory ability when instilled into the lungs of mice. These observations add important insights into the complexity of the pathogenesis of lung injury associated with Pseudomonas aeruginosa infections and provide additional rationale for exploring the efficacy of NO(2)(-) in the therapy of chronic Pseudomonas aeruginosa airway infection in cystic fibrosis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号