首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   2篇
  6篇
  2003年   1篇
  1998年   1篇
  1996年   1篇
  1995年   1篇
  1994年   1篇
  1990年   1篇
排序方式: 共有6条查询结果,搜索用时 0 毫秒
1
1.
Physiological features associated with differential resistance to salinity were evaluated in two sugarcane (Saccharum spp. hybrid) cultivars over an 8-week period during which greenhouse-grown plants were drip-irrigated with water or with NaCI solutions of 2, 4, 8, or 12 decisiemens (dS) m-1 electrical conductivity (EC). The CO2 assimilation rate (A), stomatal conductance (g), and shoot growth rate (SGR) began to decline as EC of the irrigation solution increased above 2 dS m-1. A, g, and SGR of a salinity-resistant cultivar (H69-8235) were consistently higher than those of a salinity-susceptible cultivar (H65-7052) at all levels of salinity and declined less sharply with increasing salinity. Carbon isotope discrimination ([delta]) in tissue obtained from the uppermost fully expanded leaf increased with salinity and with time elapsed from the beginning of the experiment, but [delta] was consistently lower in the resistant than in the susceptible cultivar at all levels of salinity. Gas-exchange measurements suggested that variation in [delta] was attributable largely to variation in bundle sheath leakiness to CO2 ([phi]). Salinity-induced increases in [phi] appeared to be caused by a reduction in C3 pathway activity relative to C4 pathway activity rather than by physical changes in the permeability of the bundle sheath to CO2. A strong correlation between [delta] and A, g, and SGR permitted these to be predicted from [delta] regardless of the cultivar and salinity level. [delta] thus provided an integrated measure of several components of physiological performance and response.  相似文献   
2.
Plant water status, leaf tissue pressure-volume relationships, and photosynthetic gas exchange were monitored in five coffee (Coffea arabica L.) cultivars growing in drying soil in the field. There were large differences among cultivars in the rates at which leaf water potential (ΨL) and gas exchange activity declined when irrigation was discontinued. Pressure-volume curve analysis indicated that increased leaf water deficits in droughted plants led to reductions in bulk leaf elasticity, osmotic potential, and in the ΨL at which turgor loss occurred. Adjustments in ΨL at zero turgor were not sufficient to prevent loss or near loss of turgor in three of five cultivars at the lowest values of midday ΨL attained. Maintenance of protoplasmic volume was more pronounced than maintenance of turgor as soil drying progressed. Changes in assimilation and stomatal conductance were largely independent of changes in bulk leaf turgor, but were associated with changes in relative symplast volume. It is suggested that osmotic and elastic adjustment contributed to maintenance of gas exchange in droughted coffee leaves probably through their effects on symplast volume rather than turgor.  相似文献   
3.
Whole-canopy measurements of water flux were used to calculate stomatal conductance (g s ) and transpiration (E) for seedlings of western water birch (Betula occidentalis Hook.) under various soil-plant hydraulic conductances (k), evaporative driving forces (ΔN; difference in leaf-to-air molar fraction of water vapor), and soil water potentials (Ψs). As expected, g s dropped in response to decreased k or ΨS, or increased ΔN(> 0.025). Field data showed a decrease in mid-day g s with decreasing k from soil-to-petiole, with sapling and adult plants having lower values of both parameters than juveniles. Stomatal closure prevented E and Ψ from inducing xylem cavitation except during extreme soil drought when cavitation occurred in the main stem and probably roots as well. Although all decreases in g s were associated with approximately constant bulk leaf water potential (ψl), this does not logically exclude a feedback response between ΨL and g s . To test the influence of leaf versus root water status on g s , we manipulated water status of the leaf independently of the root by using a pressure chamber enclosing the seedling root system; pressurizing the chamber alters cell turgor and volume only in the shoot cells outside the chamber. Stomatal closure in response to increased ΔN, decreased k, and decreased ΨS was fully or partially reversed within 5 min of pressurizing the soil. Bulk ΨL remained constant before and after soil pressurizing because of the increase in E associated with stomatal opening. When ΔN was low (i.e., < 0.025), pressurizing the soil either had no effect on g s , or caused it to decline; and bulk ΨL increased. Increased Ψl may have caused stomatal closure via increased backpressure on the stomatal apparatus from elevated epidermal turgor. The stomatal response to soil pressurizing indicated a central role of leaf cells in sensing water stress caused by high ΔN, low k, and low ΨS. Invoking a prominent role for feedforward signalling in short-term stomatal control may be premature.  相似文献   
4.
5.
6.
烟草黄矮双生病毒中双向启动子的活性及其调节控制   总被引:2,自引:0,他引:2  
将烟草黄矮双生病毒(TobYDV)中双向启动子的区域,以不同长度的片段和方向插入启动子分析载体pG1,与GUS报道基因和NOS终止子融合。同时,将各个TobYDV读码框区域插入表达载体pART7中,置于CaMV35S启动子和OCS终止子之间。用电穿孔法将各种启动子构建物个别地或者与读码框构建物成对地导入烟草和玉米原生质体,以考察TobYDV启动子控制下GUS基因瞬间表达的活性,以及TobYDV的读  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号