首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   140篇
  免费   15篇
  2022年   1篇
  2021年   3篇
  2020年   2篇
  2019年   9篇
  2018年   3篇
  2017年   3篇
  2016年   6篇
  2015年   6篇
  2014年   8篇
  2013年   6篇
  2012年   12篇
  2011年   13篇
  2010年   8篇
  2009年   5篇
  2008年   9篇
  2007年   3篇
  2006年   5篇
  2005年   6篇
  2004年   4篇
  2003年   3篇
  2002年   2篇
  2001年   5篇
  2000年   1篇
  1999年   3篇
  1998年   4篇
  1996年   2篇
  1995年   3篇
  1994年   2篇
  1993年   2篇
  1989年   1篇
  1988年   2篇
  1987年   1篇
  1986年   1篇
  1984年   1篇
  1982年   1篇
  1978年   1篇
  1977年   3篇
  1975年   1篇
  1974年   1篇
  1968年   1篇
  1966年   1篇
  1958年   1篇
排序方式: 共有155条查询结果,搜索用时 15 毫秒
1.
Salt-sensitive hypertension is a major risk factor for renal impairment leading to chronic kidney disease. High-salt diet leads to hypertonic skin interstitial volume retention enhancing the activation of the tonicity-responsive enhancer-binding protein (TonEBP) within macrophages leading to vascular endothelial growth factor C (VEGF-C) secretion and NOS3 modulation. This promotes skin lymphangiogenesis and blood pressure regulation. Whether VEGF-C administration enhances renal and skin lymphangiogenesis and attenuates renal damage in salt-sensitive hypertension remains to be elucidated. Hypertension was induced in BALB/c mice by a high-salt diet. VEGF-C was administered subcutaneously to high-salt-treated mice as well as control animals. Analyses of kidney injury, inflammation, fibrosis, and biochemical markers were performed in vivo. VEGF-C reduced plasma inflammatory markers in salt-treated mice. In addition, VEGF-C exhibited a renal anti-inflammatory effect with the induction of macrophage M2 phenotype, followed by reductions in interstitial fibrosis. Antioxidant enzymes within the kidney as well as urinary RNA/DNA damage markers were all revelatory of abolished oxidative stress under VEGF-C. Furthermore, VEGF-C decreased the urinary albumin/creatinine ratio and blood pressure as well as glomerular and tubular damages. These improvements were associated with enhanced TonEBP, NOS3, and lymphangiogenesis within the kidney and skin. Our data show that VEGF-C administration plays a major role in preserving renal histology and reducing blood pressure. VEGF-C might constitute an interesting potential therapeutic target for improving renal remodeling in salt-sensitive hypertension.  相似文献   
2.
We compared male-reproductive-tract polypeptides of Drosophila melanogaster and D. simulans by using two-dimensional gel electrophoresis. Approximately 64% of male-reproductive-tract polypeptides were identical between two randomly chosen isofemale lines from these two species, compared with 83% identity for third-instar imaginal wing-disc polypeptides. Qualitatively similar differences were found between reproductive tracts and imaginal discs when D. sechellia was compared with D. melanogaster and with D. simulans. When genic polymorphism was taken into account, approximately 10% of male- reproductive-tract polypeptides were apparently fixed for different alleles between D. melanogaster and D. simulans; this proportion is the same as that found for soluble enzymes by one-dimensional gel electrophoresis. Strikingly, approximately 20% of male-reproductive- tract polypeptides of either D. melanogaster or D. simulans had no detectable homologue in the other species. We propose that proteins of the Drosophila male reproductive tract may have diverged more extensively between species than have other types of proteins and that much of this divergence may involve large changes in levels of polypeptide expression.   相似文献   
3.
When the outer surface of short-circuited frog skin was penetrated with microelectrodes, stable negative potentials that averaged near -100 mV were recorded consistently, confirming the results of Nagel (W. Nagel. 1975. Abstracts of the 5th International Biophysics Congress, Copenhagen. P-147.). The appearance of these stable potentials, V(O), concurrent with the observations that (a) a high resistance outer barrier R(O) accounting for approximately 75 percent or more of the transcellular resistance of control skins had been penetrated and that (b) 10(-5) M amiloride and reduced [Na] outside caused the values of V(O) to increase towards means value near -130 mV while the values of percent R(O) increased to more than 90 percent. It was of relationships were the same as the values of E(1) observed in studies of the current-voltage relationships were the same as the values of E’(1) defined as the values of voltage at the inner barrier when the V(O) of the outer barrier was reduced to zero by voltage clamping of the skins. Accordingly, these data are interpreted to mean that the values of E(1), approximately 130 mV, represent the E(Na) of the sodium pump at the inner barrier. 2,4-DNP was observed to decrease the values of transepithelial voltage less than E(1) the V(O) was negative. These data can be interpreted with a simple electrical equivalent circuit of the active sodium transport pathway of the frog skin that includes the idea that the outer membrane behaves as an electrical rectifier for ion transport.  相似文献   
4.
5.
6.
Heart failure with preserved ejection fraction (HFpEF) is a common clinical syndrome associated with high morbidity and mortality. Therapeutic options are limited due to a lack of knowledge of the pathology and its evolution. We investigated the cellular phenotype and Ca2+ handling in hearts recapitulating HFpEF criteria. HFpEF was induced in a portion of male Wistar rats four weeks after abdominal aortic banding. These animals had nearly normal ejection fraction and presented elevated blood pressure, lung congestion, concentric hypertrophy, increased LV mass, wall stiffness, impaired active relaxation and passive filling of the left ventricle, enlarged left atrium, and cardiomyocyte hypertrophy. Left ventricular cell contraction was stronger and the Ca2+ transient larger. Ca2+ cycling was modified with a RyR2 mediated Ca2+ leak from the sarcoplasmic reticulum and impaired Ca2+ extrusion through the Sodium/Calcium exchanger (NCX), which promoted an increase in diastolic Ca2+. The Sarcoplasmic/endoplasmic reticulum Ca2+ ATPase (SERCA2a) and NCX protein levels were unchanged. The phospholamban (PLN) to SERCA2a ratio was augmented in favor of an inhibitory effect on the SERCA2a activity. Conversely, PLN phosphorylation at the calmodulin-dependent kinase II (CaMKII)-specific site (PLN-Thr17), which promotes SERCA2A activity, was increased as well, suggesting an adaptive compensation of Ca2+ cycling. Altogether our findings show that cardiac remodeling in hearts with a HFpEF status differs from that known for heart failure with reduced ejection fraction. These data also underscore the interdependence between systolic and diastolic “adaptations” of Ca2+ cycling with complex compensative interactions between Ca2+ handling partner and regulatory proteins.  相似文献   
7.
8.
The development of new therapeutic strategies is necessary to reduce the worldwide social and economic impact of cardiovascular disease, which produces high rates of morbidity and mortality. A therapeutic option that has emerged in the last decade is cell therapy. The aim of this study was to compare the effect of transplanting human umbilical cord-derived stromal cells (UCSCs), human umbilical cord blood-derived endothelial cells (UCBECs) or a combination of these two cell types for the treatment of ischemic cardiomyopathy (IC) in a Wistar rat model. IC was induced by left coronary artery ligation, and baseline echocardiography was performed seven days later. Animals with a left ventricular ejection fraction (LVEF) of ≤40% were selected for the study. On the ninth day after IC was induced, the animals were randomized into the following experimental groups: UCSCs, UCBECs, UCSCs plus UCBECs, or vehicle (control). Thirty days after treatment, an echocardiographic analysis was performed, followed by euthanasia. The animals in all of the cell therapy groups, regardless of the cell type transplanted, had less collagen deposition in their heart tissue and demonstrated a significant improvement in myocardial function after IC. Furthermore, there was a trend of increasing numbers of blood vessels in the infarcted area. The median value of LVEF increased by 7.19% to 11.77%, whereas the control group decreased by 0.24%. These results suggest that UCSCs and UCBECs are promising cells for cellular cardiomyoplasty and can be an effective therapy for improving cardiac function following IC.  相似文献   
9.
To survive, the human malaria parasite Plasmodium falciparum must acquire pantothenate (vitamin B5) from the external medium. Pantothenol (provitamin B5) inhibits parasite growth by competing with pantothenate for pantothenate kinase, the first enzyme in the coenzyme A biosynthesis pathway. In this study we investigated pantothenol uptake by P. falciparum and in doing so gained insights into the regulation of the parasite's coenzyme A biosynthesis pathway. Pantothenol was shown to enter P. falciparum-infected erythrocytes via two routes, the furosemide-inhibited "new permeation pathways" induced by the parasite in the infected erythrocyte membrane (the sole access route for pantothenate) and a second, furosemide-insensitive pathway. Having entered the erythrocyte, pantothenol is taken up by the intracellular parasite via a mechanism showing functional characteristics distinct from those of the parasite's pantothenate uptake mechanism. On reaching the parasite cytosol, pantothenol is phosphorylated and thereby trapped by pantothenate kinase, shown here to be under feedback inhibition control by coenzyme A. Furosemide reduced this inherent feedback inhibition by competing with coenzyme A for binding to pantothenate kinase, thereby increasing pantothenol uptake.  相似文献   
10.
Among glycosaminoglycan (GAG) biosynthetic enzymes, the human β1,4-galactosyltransferase 7 (hβ4GalT7) is characterized by its unique capacity to take over xyloside derivatives linked to a hydrophobic aglycone as substrates and/or inhibitors. This glycosyltransferase is thus a prime target for the development of regulators of GAG synthesis in therapeutics. Here, we report the structure-guided design of hβ4GalT7 inhibitors. By combining molecular modeling, in vitro mutagenesis, and kinetic measurements, and in cellulo analysis of GAG anabolism and decorin glycosylation, we mapped the organization of the acceptor binding pocket, in complex with 4-methylumbelliferone-xylopyranoside as prototype substrate. We show that its organization is governed, on one side, by three tyrosine residues, Tyr194, Tyr196, and Tyr199, which create a hydrophobic environment and provide stacking interactions with both xylopyranoside and aglycone rings. On the opposite side, a hydrogen-bond network is established between the charged amino acids Asp228, Asp229, and Arg226, and the hydroxyl groups of xylose. We identified two key structural features, i.e. the strategic position of Tyr194 forming stacking interactions with the aglycone, and the hydrogen bond between the His195 nitrogen backbone and the carbonyl group of the coumarinyl molecule to develop a tight binder of hβ4GalT7. This led to the synthesis of 4-deoxy-4-fluoroxylose linked to 4-methylumbelliferone that inhibited hβ4GalT7 activity in vitro with a Ki 10 times lower than the Km value and efficiently impaired GAG synthesis in a cell assay. This study provides a valuable probe for the investigation of GAG biology and opens avenues toward the development of bioactive compounds to correct GAG synthesis disorders implicated in different types of malignancies.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号