首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   52篇
  免费   5篇
  57篇
  2019年   1篇
  2018年   1篇
  2015年   2篇
  2014年   1篇
  2012年   1篇
  2009年   2篇
  2008年   3篇
  2006年   2篇
  2004年   2篇
  2003年   6篇
  2002年   2篇
  2001年   2篇
  2000年   3篇
  1999年   1篇
  1998年   2篇
  1997年   2篇
  1996年   4篇
  1995年   2篇
  1993年   1篇
  1992年   2篇
  1991年   3篇
  1990年   3篇
  1989年   2篇
  1988年   2篇
  1987年   3篇
  1986年   1篇
  1981年   1篇
排序方式: 共有57条查询结果,搜索用时 15 毫秒
1.
We have shown previously that the domain recognizing receptors on activated human platelets is located on the human fibrinogen gamma chain between residues 400 and 411 [Kloczewiak, M., Timmons, S., Lukas, T. J., & Hawiger, J. (1984) Biochemistry 23, 1767]. To study the correlation between the structure of this segment of the gamma chain and its reactivity toward receptors on ADP-activated human platelets, we designed a series of analogues containing replacements at 9 out of 12 positions. A double substitution of the normal His400-His401 sequence by Ala-Ala reduced the inhibitory potency of the dodecapeptide 3-fold. When Lys406 was replaced by Arg, the inhibitory potency of the dodecapeptide decreased 15 times. On the other hand, substitution of Ala408 with Arg increased the inhibitory potency of the dodecapeptide 6-fold. A drastic decrease in the reactivity of the dodecapeptide toward platelet receptors was observed when Val411 was replaced by leucine or cysteine or tyrosine. A 3-fold decrease in reactivity was noted when Val411 was substituted with phenylalanine. Amidation of the carboxy-terminal Val411 also produced a significant decrease in dodecapeptide reactivity. With seven residues (His400, His401, Leu402, Lys406, Gln407, Asp410, and Val411) preserved, substitution of the intervening five amino acids with nonpolar leucine or polar serine, increasing or decreasing the hydrophobicity of the dodecapeptide, reduced more than 16-fold its inhibitory potency. Rabbit antibody Fab fragments directed against the human fibrinogen gamma-chain peptide encompassing residues 385-411 inhibited 50% of 125I-fibrinogen binding at a 2:1 stoichiometry with regard to 125I-fibrinogen.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   
2.
Calpeptin (a cell permeable synthetic peptide calpain inhibitor) inhibited the generation of thromboxane B2 (TxB2) by the direct inhibition on Tx synthetase in platelets at the concentrations more than 30 microM. Calpeptin, its analogues and E-64d (EST) were further examined with regard to cell permiability and inhibitory spectra. Among all compounds, only calpeptin inhibited the degradation of substrate proteins of calpain with negligible effect on TxB2 generation in intact platelets at the concentrations less than 30 microM. These concentrations of calpeptin did not inhibit the platelet aggregation, the elevation of [Ca2+], nor the formation of inositol 1,4,5-trisphosphate (IP3) in thrombin or collagen activated platelets. These results indicate that calpain dose not participate in the process of platelet activation induced by thrombin or collagen.  相似文献   
3.
We previously demonstrated that myosin light chain kinase (MLCK) of gizzard is proteolyzed by platelet calpain. It has been also reported that partially cleaved MLCK may phosphorylate myosin light chain (20K) in the absence of calmodulin. Therefore, a possible participation of calpain in 20K phosphorylation was studied in human platelets, utilizing various inhibitors. An epoxy succinate derivative (E-64) or N-ethylmaleimide (NEM), used as calpain antagonist, inhibited 20K phosphorylation of Ca2+-stimulated lysed platelets. A synergistic effect between these calpain antagonists and calmodulin antagonist W-7 was observed. Also, the similar results were obtained in 20K phosphorylation of intact platelets. From these observations, it was suggested that 20K phosphorylation in platelets is mediated by two separate pathways, namely calmodulin and calpain dependent pathways, provided that calpain activity is specifically inhibited by the antagonists used.  相似文献   
4.
5.
We found that human neutrophils undergo homotypic aggregation by loading the physiological range of fluid shear stress (12–30 dynes/cm2). Under the fluid shear stress, an increase of intracellular Ca2+ concentration of neutrophils was observed. This increase of intracellular Ca2+ concentration was caused by Ca2+ influx, and the blockage of the flux by NiCl2 suppressed the neutrophil homotypic aggregation. Furthermore, this neutrophil aggregation under fluid shear stress was completely inhibited by pretreatment with antibody against LFA-1 or ICAM-3. These results suggested that NiCl2-sensitive Ca2+ channel played an important role in LFA-1/ICAM-3-mediated neutrophil homotypic aggregation under fluid shear stress. © 1996 Wiley-Liss, Inc.  相似文献   
6.
By incubating platelets at low temperature (10 degrees C), the relationship between Ca2+ mobilization and formation of inositol 1,4,5-trisphosphate (IP3) in thrombin stimulated platelets could be precisely investigated. In the presence of 1 mM EGTA, time dependent changes in the intracellular free calcium concentration [( Ca2+]i) were closely related to those in IP3 formation. Time course of the influx of external Ca2+, estimated by delta [Ca2+]i obtained by subtracting [Ca2+]i in the presence of 1 mM EGTA from that in the presence of 1 mM CaCl2 was also very similar to that of IP3 formed. Furthermore, the increase in delta [Ca2+]i was extremely well correlated with the amount of IP3 formed (Y = 49X - 34, r = 0.99). Thus, these data indicate that IP3 might be involved not only in intracellular Ca2+ mobilization but in Ca2+ influx of human platelets stimulated by thrombin.  相似文献   
7.
Incubation with microbial culture supernatants improved essential oil yield from Aquilaria subintegra woodchips. The harvested woodchips were incubated with de man, rogosa and sharpe (MRS) agar, yeast mold (YM) agar medium and six different microbial culture supernatants obtained from Lactobacillus bulgaricus, L. acidophilus, Streptococcus thermophilus, Lactococcus lactis, Saccharomyces carlsbergensis and S. cerevisiae prior to hydrodistillation. Incubation with lactic acid bacteria supernatants provided higher yield of agarwood oil (0.45% w/w) than that obtained from yeast (0.25% w/w), agar media (0.23% w/w) and water (0.22% w/w). The composition of agarwood oil from all media and microbial supernatant incubations was investigated by using gas chromatography-mass spectrometry. Overall, three major volatile profiles were obtained, which corresponded to water soaking (control), as well as, both YM and MRS media, lactic acid bacteria, and yeast supernatant incubations. Sesquiterpenes and their oxygenated derivatives were key components of agarwood oil. Fifty-two volatile components were tentatively identified in all samples. Beta-agarofuran, α-eudesmol, karanone, α-agarofuran and agarospirol were major components present in most of the incubated samples, while S. cerevisiae-incubated A. subintegra provided higher amount of phenyl acetaldehyde. Microbial culture supernatant incubation numerically provided the highest yield of agarwood oil compared to water soaking traditional method, possibly resulting from activity of extracellular enzymes produced by the microbes. Incubation of agarwood with lactic acid bacteria supernatant significantly enhanced oil yields without changing volatile profile/composition of agarwood essential oil, thus this is a promising method for future use.  相似文献   
8.
Using a parallel-plate flow-chamber and confocal laser scanning microscopy (CLSM), we studied the distribution and temporal changes in intracellular Ca2+ concentration ([Ca2+]i) in migrating HUVECs stimulated by shear-stress. In the presence or absence of ATP, shear-stress (10 dyne/cm2) caused morphological change and migration of individual HUVECs in the random direction. After 120 minute exposure to shear-stress, 70% of the cells migrated in the direction of flow, whereas, as many as 30% of the cells migrated to the upstream against flow. A nonspecific plasma membrane Ca2+ channel blocker, Ni2+, abolished such responses markedly, suggesting that Ca2+ influx may be essential for shear-stress dependent morphological change and migration of HUVECs. Analysis of [Ca2+]i distribution revealed the appearance of localized [Ca2+]i elevation inside lamellipodium formed in the direction of cell migration. The localized rise in [Ca2+]i might be closely related with morphological change to regulate the direction of cell migration induced by shear-stress.  相似文献   
9.
Calyculin A and okadaic acid, potent and cell permeable inhibitors of type 1 and type 2A protein phosphatases, inhibit platelet aggregation and secretion. However, the relationship between phosphatase inhibition and inhibition of platelet function is not well understood. We found that in unstimulated platelets, talin (P235) was phosphorylated at threonine residues by calyculin A. Furthermore, the extent of talin phosphorylation by calyculin A was closely correlated with its inhibition of thrombin-induced platelet aggregation. Since the binding of talin to platelet glycoprotein IIb/IIIa complex has been shown to be affected by its phosphorylation, these results suggest that type 1 and/or type 2A protein phosphatases may play a role in the regulation of membrane-cytoskeleton interaction through dephosphorylation of talin.  相似文献   
10.
Intracellular lipid accumulation (steatosis) and resultant lipotoxicity are key features of diabetic cardiomyopathy. Since cardiac hormone-sensitive lipase (HSL) is activated in diabetic mice, we sought to explore a pathophysiological function of cardiac HSL in the development of diabetic cardiomyopathy. Transgenic (Tg) mice with heart-specific HSL overexpression were generated, and cardiac histology, function, lipid profile, and gene expressions were analyzed after induction of diabetes by streptozotocin. Electron microscopy showed numerous lipid droplets in wild-type (Wt) hearts after 3 wk of diabetes, whereas Tg mice showed no lipid droplet accumulation. Cardiac content of acylglycerides was increased approximately 50% with diabetes in Wt mice, whereas this was blunted in Tg hearts. Cardiac lipid peroxide content was twofold lower in Tg hearts than in Wt hearts. The mRNA expressions for peroxisome proliferator-activated receptor-alpha, genes for triacylglycerol synthesis, and lipoprotein lipase were increased with diabetes in Wt hearts, whereas this induction was absent in Tg hearts. Expression of genes associated with lipoapoptosis was decreased, whereas antioxidant protein metallothioneins were increased in diabetic Tg hearts. Diabetic Wt hearts showed interstitial fibrosis and increased collagen content. However, Tg hearts displayed no overt fibrosis, concomitant with decreased expression of collagens, transforming growth factor-beta, and matrix metalloproteinase 2. Notably, mortality during the experimental period was approximately twofold lower in diabetic Tg mice compared with Wt mice. In conclusion, since HSL overexpression inhibits cardiac steatosis and fibrosis by apparently hydrolyzing toxic lipid metabolites, cardiac HSL could be a therapeutic target for regulating diabetic cardiomyopathy.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号