首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   277篇
  免费   16篇
  国内免费   2篇
  2023年   2篇
  2022年   8篇
  2021年   24篇
  2020年   10篇
  2019年   8篇
  2018年   11篇
  2017年   10篇
  2016年   13篇
  2015年   25篇
  2014年   23篇
  2013年   19篇
  2012年   19篇
  2011年   19篇
  2010年   7篇
  2009年   9篇
  2008年   15篇
  2007年   10篇
  2006年   15篇
  2005年   14篇
  2004年   7篇
  2003年   7篇
  2002年   3篇
  2001年   1篇
  2000年   4篇
  1999年   2篇
  1994年   1篇
  1991年   1篇
  1990年   1篇
  1981年   2篇
  1980年   1篇
  1979年   1篇
  1978年   2篇
  1957年   1篇
排序方式: 共有295条查询结果,搜索用时 15 毫秒
1.
Treacher Collins syndrome (TCOF1) is an autosomal dominant disorder of craniofacial development the features of which include conductive hearing loss and cleft palate. Previous studies have localized the TCOF1 locus between D5S519 (proximal) and SPARC (distal), a region of 22 centirays as estimated by radiation hybrid mapping. In the current investigation we have created a contig across the TCOF1 critical region, using YAC clones. Isolation of a novel short tandem repeat polymorphism corresponding to the end of one of the YACs has allowed us to reduce the size of the critical region to approximately 840 kb, which has been covered with three nonchimeric YACs. Restriction mapping has revealed that the region contains a high density of clustered rare-cutter restriction sites, suggesting that it may contain a number of different genes. The results of the present investigation have further allowed us to confirm that the RPS14 locus lies proximal to the critical region and can thereby be excluded from a role in the pathogenesis of TCOF1, while ANX6 lies within the TCOF1 critical region and remains a potential candidate for the mutated gene.  相似文献   
2.
3.
International Journal of Peptide Research and Therapeutics - The original version of the article unfortunately contained a typo in co-author name.  相似文献   
4.
Food producing animals harbouring bacteria carrying drug resistance genes especially the metallo-beta-lactamase (MBL) pose high risk for the human population. In addition, formation of biofilm by these drug resistant pathogens represents major threat to food safety and public health. In this study, metallo-β-lactamases (MβLs) producing Pseudomonas spp. from camel meat were isolated and assessed for their biofilm formation. Further, in vitro and in silico studies were performed to study the effect of flavone naringin on biofilm formation against isolated Pseudomonas spp. A total of 55% isolates were found to produce metallo-β-lactamase enzyme. Naringin mitigated biofilm formation of Pseudomonas isolates up to 57%. Disturbed biofilm architecture and reduced the colonization of bacteria on glass was observed under scanning electron microscope (SEM) and confocal laser scanning microscope (CLSM). The biofilm related traits such as exopolysaccharides (EPS) and alginate production was also reduced remarkably in the presence of naringin. Eradication of preformed biofilms (32–60%) was also observed at the respective 0.50 × MICs. Molecular docking revealed that naringin showed strong affinity towards docked proteins with binding energy ranging from −8.6 to −8.8 kcal mol−1. Presence of metallo-β-lactamase producers indicates that camel meat could be possible reservoir of drug-resistant Pseudomonas species of clinical importance. Naringin was successful in inhibiting biofilm formation as well as eradicating the preformed biofilms and demonstrated strong binding affinity towards biofilm associated protein. Thus, it is envisaged that naringin could be exploited as food preservative especially against the biofilm forming food-borne Pseudomonas species and is a promising prospect for the treatment of biofilm based infections.  相似文献   
5.
The novel coronavirus disease (COVID-19) that emerged in December 2019 had caused substantial morbidity and mortality at the global level within few months. It affected economies, stopped travel, and isolated individuals and populations around the world. Wildlife, especially bats, serve as reservoirs of coronaviruses from which the variant Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) emerged that causes COVID-19. In this review, we describe the current knowledge on COVID-19 and the significance of wildlife hosts in its emergence. Mammalian and avian coronaviruses have diverse host ranges with distinct lineages of coronaviruses. Recombination and reassortments occur more frequently in mixed-animal markets where diverse viral genotypes intermingle. Human coronaviruses have evolved through gene gains and losses primarily in interfaces where wildlife and humans come in frequent contact. There is a gap in our understanding of bats as reservoirs of coronaviruses and there is a misconception that bats periodically transmit coronaviruses to humans. Future research should investigate bat viral diversity and loads at interfaces between humans and bats. Furthermore, there is an urgent need to evaluate viral strains circulating in mixed animal markets, where the coronaviruses circulated before becoming adapted to humans. We propose and discuss a management intervention plan for COVID-19 and raise questions on the suitability of current containment plans. We anticipate that more virulent coronaviruses could emerge unless proper measures are taken to limit interactions between diverse wildlife and humans in wild animal markets.  相似文献   
6.
Exome sequencing coupled with homozygosity mapping was used to identify a transition mutation (c.794T>C; p.Leu265Ser) in ELMOD3 at the DFNB88 locus that is associated with nonsyndromic deafness in a large Pakistani family, PKDF468. The affected individuals of this family exhibited pre-lingual, severe-to-profound degrees of mixed hearing loss. ELMOD3 belongs to the engulfment and cell motility (ELMO) family, which consists of six paralogs in mammals. Several members of the ELMO family have been shown to regulate a subset of GTPases within the Ras superfamily. However, ELMOD3 is a largely uncharacterized protein that has no previously known biochemical activities. We found that in rodents, within the sensory epithelia of the inner ear, ELMOD3 appears most pronounced in the stereocilia of cochlear hair cells. Fluorescently tagged ELMOD3 co-localized with the actin cytoskeleton in MDCK cells and actin-based microvilli of LLC-PK1-CL4 epithelial cells. The p.Leu265Ser mutation in the ELMO domain impaired each of these activities. Super-resolution imaging revealed instances of close association of ELMOD3 with actin at the plasma membrane of MDCK cells. Furthermore, recombinant human GST-ELMOD3 exhibited GTPase activating protein (GAP) activity against the Arl2 GTPase, which was completely abolished by the p.Leu265Ser mutation. Collectively, our data provide the first insights into the expression and biochemical properties of ELMOD3 and highlight its functional links to sound perception and actin cytoskeleton.  相似文献   
7.
Mughees  Mohd  Chugh  Himanshu  Wajid  Saima 《Protoplasma》2020,257(2):345-352
Protoplasma - Vesicular trafficking between endoplasmic reticulum and Golgi plays a major role in the growth and proliferation of breast cancer cells. Various proteins regulate this ER-Golgi...  相似文献   
8.
Haider  Saida  Sajid  Irfan  Batool  Zehra  Madiha  Syeda  Sadir  Sadia  Kamil  Noor  Liaquat  Laraib  Ahmad  Saara  Tabassum  Saiqa  Khaliq  Saima 《Neurochemical research》2020,45(11):2762-2774

Noise has always been an important environmental factor that induces health problems in the general population. Due to ever increasing noise pollution, humans are facing multiple auditory and non-auditory problems including neuropsychiatric disorders. In modern day life it is impossible to avoid noise due to the rapid industrialization of society. Continuous exposure to noise stress creates a disturbance in brain function which may lead to memory disorder. Therefore, it is necessary to find preventive measures to reduce the deleterious effects of noise exposure. Supplementation of taurine, a semi essential amino acid, is reported to alleviate psychiatric disorders. In this study noise-exposed (100 db; 3 h daily for 15 days) rats were supplemented with taurine at a dose of 100 mg/kg for 15 days. Spatial and recognition memory was assessed using the Morris water maze and novel object recognition task, respectively. Results of this study showed a reversal of noise-induced memory impairment in rats. The derangements of catecholaminergic and serotonergic levels in the hippocampus and altered brain antioxidant enzyme activity due to noise exposure were also restored by taurine administration. This study highlights the importance of taurine supplementation to mitigate noise-induced impaired memory via normalizing the neurochemical functions and reducing oxidative stress in rat brain.

  相似文献   
9.
Abstract

Acinetobacter baumannii is a biofilm forming multidrug resistant (MDR) pathogen responsible for respiratory tract infections. In this study, aluminium oxide nanoparticles (Al2O3 NPs) were synthesized and characterized by TEM and EDX and shown to be spherical shaped nanoparticles with a diameter < 10?nm. The minimum inhibitory concentration (MIC) and the minimum bactericidal concentration (MBC) for the Al2O3 NPs ranged between 125 and 1,000?µg ml?1. Exposure to NPs caused cellular membrane disruption, indicated by an increase in cellular leakage of the contents. Biofilm inhibition was 11.64 to 70.2%, whereas attachment of bacteria to polystyrene surfaces was reduced to 48.8 to 51.9% in the presence of NPs. Nanoparticles also reduced extracellular polymeric substance production and the biomass of established biofilms. The data revealed the non-toxic nature of Al2O3 NPs up to a concentrations of 120?µg ml?1 in HeLa cell lines. These results demonstrate an effective and safer use of Al2O3 NPs against the MDR A. baumannii by targeting biofilm formation, adhesion and EPS production.  相似文献   
10.
A greenhouse experiment was conducted to examine the effect of foliar application of triacontanol (TRIA) on two cultivars (cv. S-24 and MH-97) of wheat (Triticum aestivum L.) at different growth stages. Plants were grown in full strength Hoagland’s nutrient solution under salt stress (150 mM NaCl) or control (0 mM NaCl) conditions. Three TRIA concentrations (0, 10, and 20 μM) were sprayed over leaves at three different growth stages, i.e. vegetative (V), boot (B), and vegetative + boot (VB) stages (two sprays on same plants, i.e., the first at 30-d-old plants and the second 78-d-old plants). Salt stress decreased significantly growth, net photosynthetic rate (P N), transpiration rate (E), chlorophyll contents (Chl a and b), and electron transport rate (ETR), while membrane permeability increased in both wheat cultivars. Stomatal conductance (g s) decreased only in salt-sensitive cv. MH-97 under saline conditions. Foliar application of TRIA at different growth stages enhanced significantly the growth, P N, g s, Chl a and b contents, and ETR, while membrane permeability was reduced in both cultivars under salt stress. Of various growth stages, foliar-applied TRIA was comparatively more effective when it was applied at V and VB stages. Overall, 10 μM TRIA concentration was the most efficient in reducing negative effects of salinity stress in both wheat cultivars. The cv. S-24 showed the better growth and ETR, while cv. MH-97 exhibited higher nonphotochemical quenching.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号