首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   173篇
  免费   34篇
  2022年   4篇
  2021年   1篇
  2019年   2篇
  2018年   4篇
  2017年   3篇
  2016年   7篇
  2015年   10篇
  2014年   10篇
  2013年   8篇
  2012年   20篇
  2011年   7篇
  2010年   4篇
  2009年   11篇
  2008年   12篇
  2007年   3篇
  2006年   10篇
  2005年   5篇
  2004年   5篇
  2003年   2篇
  2002年   7篇
  2001年   5篇
  2000年   4篇
  1999年   3篇
  1998年   12篇
  1997年   3篇
  1996年   8篇
  1995年   3篇
  1994年   5篇
  1992年   5篇
  1991年   2篇
  1990年   2篇
  1989年   2篇
  1988年   2篇
  1987年   2篇
  1986年   1篇
  1985年   3篇
  1980年   1篇
  1979年   2篇
  1977年   2篇
  1975年   3篇
  1971年   1篇
  1954年   1篇
排序方式: 共有207条查询结果,搜索用时 46 毫秒
1.
The peptide antibiotic nisin is shown to disrupt valinomycin-induced potassium diffusion potentials imposed on intact cells of Staphylococcus cohnii 22. Membrane depolarization occurred rapidly at high diffusion potentials while at low potentials nisin-induced depolarization was slower suggesting that nisin requires a membrane potential for activity. This assumption was proven in experiments with planar lipid bilayers (black lipid membranes). Macroscopic conductivity measurements indicated a voltage-dependent action of nisin. The potential must have a trans-negative orientation with respect to the addition of nisin (added to the cis-side) and a sufficient magnitude (ca. -100 mV). With intact cells the threshold potential was lower (-50 to -80 mV at pH 7.5 and below -50 mV at pH 5.5). Single channel recordings resolved transient multistate pores, strongly resembling those introduced by melittin into artificial bilayers. The pores had diameters in the range of 0.2–1 nm, and lifetimes of few to several hundred milliseconds. The results indicate that nisin has to be regarded as a membrane-depolarizing agent which acts in a voltage-dependent fashion.Abbreviations BLM Black lipid membranes - CCCP carbonyl cyanide m-chlorophenylhydrazone - DOPC dioleoyl phosphatidylcholine - PS phosphatidylserine - TPP+ tetraphenylphosphonium cation  相似文献   
2.
The staphylococcinlike peptide Pep 5 rapidly abolished the membrane potential of bacterial cells; active transport of amino acids by cytoplasmic membrane vesicles was inhibited and preaccumulated amino acids were released upon the addition of Pep 5. Artificial asolectin vesicles were not impaired by the peptide. It is concluded that the cytoplasmic membrane is the primary target of Pep 5.  相似文献   
3.
Pep 5 and nisin are cationic bactericidal peptides which were shown to induce autolysis in Staphylococcus cohnii 22. In contrast to nisin, Pep 5 induced lysis could be stimulated in the presence of glucose. Addition of lipoteichoic acids (LTA) (d-alanine:phosphorus=0.475:1) inhibited all effects of Pep 5 on susceptible cells in a molar ratio LTA:Pep 5 of 10:1. Treatment of S. cohnii 22 with Pep 5 or nisin for 20 min and subsequent washing with 2.5 M NaCl released autolysin activity. Crude preparations of the hydrolyzing enzymes produced free amino groups as well as polysaccharide fragments from the murein backbone, suggesting the presence of a muramidase or glucosamidase, and endopeptidase or amidase. Both enzyme activities were inhibited by lipoteichoic acid; they could be fully reactivated by addition of Pep 5 in sufficient concentrations. The velocity of hydrolysis was not influenced by nisin, whereas it was doubled in presence of Pep 5. The results are discussed in view of a possible mechanism of induction of lysis by Pep 5 and nisin.Abbreviations A.U. arbitrary unit - CCCP carbonylcyanide-m-chlorophenyl hydrazone - DNase deoxyribonuclease - CYG casein yeast extract glucose - IT initial turbidity - LTA lipoteichoic acid - RNase ribonuclease - TSB Tryptone Soy Broth  相似文献   
4.
In a variety of tumour systems, individuals carrying progressively growing neoplasms have lymphoid cells with a specific cytotoxic effect on cultured tumour cells from the same individual1–4. Since the sera of tumour-bearing individuals have been shown to prevent tumour cell destruction by immune lymphocytes in vitro2,5–8 and since this serum blocking activity appears early in primary and transplant tumour development5,7, it has been suggested that the appearance of this serum blocking activity might be responsible for the progressive growth of tumours in individuals having cytotoxic lymphocytes. Counteraction of this blocking activity would thus be of primary importance in facilitating the function of an already existing or bolstered cell-mediated immunity. The serum blocking activity might be inhibited in various ways, by preventing the formation of blocking antibody or by interfering with its action (“unblocking”), as demonstrated in Moloney sarcoma regressor sera9. This type of serum also has a therapeutic effect on Moloney sarcomas in vivo10,11, which has been tentatively attributed to its unblocking activity8,9 or, possibly, to a complement-dependent cytotoxicity10. Tumour growth in the Moloney sarcoma system, however, might be due in part to continuous recruitment of neoplastic cells by virus-induced transformation and so the therapeutic effect could be due to a virus-neutralizing serum activity9,10.  相似文献   
5.
Lantibiotics are antibiotic peptides that contain the rare thioether amino acids lanthionine and/or methyllanthionine. Epidermin, Pep5 and epilancin K7 are produced by Staphylococcus epidermidis whereas gallidermin (6L-epidermin) was isolated from the closely related species Staphylococcus gallinarum. The biosynthesis of all four lantibiotics proceeds from structural genes which code for prepeptides that are enzymatically modified to give the mature peptides. The genes involved in biosynthesis, processing, export etc. are found in gene clusters adjacent to the structural genes and code for transporters, immunity functions, regulatory proteins and the modification enzymes LanB, LanC and LanD, which catalyze the biosynthesis of the rare amino acids. LanB and LanC are responsible for the dehydration of the serine and threonine residues to give dehydroalanine and dehydrobutyrine and subsequent addition of cysteine SH-groups to the dehydro amino acids which results in the thioether rings. EpiD, the only LanD enzyme known so far, catalyzes the oxidative decarboxylation of the C-terminal cysteine of epidermin which gives the C-terminal S-aminovinylcysteine after addition of a dehydroalanine residue.Abbreviations Dha 2,3-didehydroalanine - Dhb 2,3-didehydrobutyrine - Lan lanthionine - Melan methyllanthionine  相似文献   
6.
In the preceding paper (Sheetz, M. and S.J. Singer. 1977. J Cell Biol. 73:638-646) it was shown that erythrocyte ghosts undergo pronounced shape changes in the presence of mg-ATP. The biochemical effects of the action of ATP are herein examined. The biochemical effects of the action of ATP are herein examined. Phosphorylation by ATP of spectrin component 2 of the erythrocyte membrane is known to occur. We have shown that it is only membrane protein that is significantly phosphorylated under the conditions where the shape changes are produced. The extent of this phosphorylation rises with increasing ATP concentration, reaching nearly 1 mol phosphoryle group per mole of component 2 at 8mM ATP. Most of this phosphorylation appears to occur at a single site on the protein molecule, according to cyanogen bromide peptide cleavage experiments. The degree of phosphorylation of component 2 is apparently also regulated by a membrane-bound protein phosphatase. This activity can be demonstrated in erythrocyte ghosts prepared from intact cells prelabeled with [(32)P]phosphate. In addition to the phosphorylation of component 2, some phosphorylation of lipids, mainly of phosphatidylinositol, is also known to occur. The ghost shape changes are, however, shown to be correlated with the degree of phosphorylation of component 2. In such experiment, the incorporation of exogenous phosphatases into ghosts reversed the shape changes produced by ATP, or by the membrane-intercalating drug chlorpromazine. The results obtained in this and the preceding paper are consistent with the proposal that the erythrocyte membrane possesses kinase and phosphates activities which produce phosphorylation and dephosphorylation of a specific site on spectrin component 2 molecules; the steady-state level of this phosphorylation regulates the structural state of the spectrin complex on the cytoplasmic surface of the membrane, which in turn exerts an important control on the shape of the cell.  相似文献   
7.
8.
Gold salts and phenylbutazone selectively inhibit the synthesis of PGF and PGE2 respectively. Lowered production of one prostaglandin species is accompanied by an increased production of the other. Selective inhibition by these drugs was observed in the presence of adrenaline, reduced glutathione and copper sulphate under conditions when most anti-inflammatory compounds inhibited PGE2 and PGF syntheses equally. It is postulated that selective inhibitors may have a different mode of action and beneficial effects may be related to the endogenous ratio of PGE to PGF required for normal function.  相似文献   
9.
Six lakes of the Wadi Natrun, Egypt, were studied with respect to the chemical composition of their brines and the occurrence of microbial mass developments. All investigated lakes showed pH values of approximately 11 and a total salt content of generally more than 30%. The main components were sulfate, carbonate, chloride, sodium, and minor amounts of potassium. Only traces of magnesium and calcium were present, but unusually high concentrations of organic carbon compounds, nitrogen compounds, and phosphate were found. Mass developments of phototrophic sulfur bacteria, halobacteria, cyanobacteria, and green algae were observed. The functions of complete nitrogen and sulfur cycles in the alkaline brines are discussed. The properties of the lakes and their ecology are compared with data on the Dead Sea and Great Salt Lake, Utah.  相似文献   
10.
Unlike numerous pore-forming amphiphilic peptide antibiotics, the lantibiotic nisin is active in nanomolar concentrations, which results from its ability to use the lipid-bound cell wall precursor lipid II as a docking molecule for subsequent pore formation. Here we use genetically engineered nisin variants to identify the structural requirements for the interaction of the peptide with lipid II. Mutations affecting the conformation of the N-terminal part of nisin comprising rings A through C, e.g. [S3T]nisin, led to reduced binding and increased the peptide concentration necessary for pore formation. The binding constant for the S3T mutant was 0.043 x 10(7) m(-1) compared with 2 x 10(7) m(-1) for the wild-type peptide, and the minimum concentration for pore formation increased from the 1 nm to the 50 nm range. In contrast, peptides mutated in the flexible hinge region, e.g. [DeltaN20/DeltaM21]nisin, were completely inactive in the pore formation assay, but were reduced to some extent in their in vivo activity. We found the remaining in vivo activity to result from the unaltered capacity of the mutated peptide to bind to lipid II and thus to inhibit its incorporation into the peptidoglycan network. Therefore, through interaction with the membrane-bound cell wall precursor lipid II, nisin inhibits peptidoglycan synthesis and forms highly specific pores. The combination of two killing mechanisms in one molecule potentiates antibiotic activity and results in nanomolar MIC values, a strategy that may well be worth considering for the construction of novel antibiotics.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号