首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
  2015年   1篇
  2014年   2篇
  2010年   1篇
  2007年   1篇
排序方式: 共有5条查询结果,搜索用时 15 毫秒
1
1.
2.
Adult human adipose-derived mesenchymal stem cells (hAMSCs) are multipotent cells, which are abundant, easily collected, and bypass the ethical concerns that plague embryonic stem cells. Their utility and accessibility have led to the rapid development of clinical investigations to explore their autologous and allogeneic cellular-based regenerative potential, tissue preservation capabilities, anti-inflammatory properties, and anticancer properties, among others. hAMSCs are typically cultured under ambient conditions with 21% oxygen. However, physiologically, hAMSCs exist in an environment of much lower oxygen tension. Furthermore, hAMSCs cultured in standard conditions have shown limited proliferative and migratory capabilities, as well as limited viability. This study investigated the effects hypoxic culture conditions have on primary intraoperatively derived hAMSCs. hAMSCs cultured under hypoxia (hAMSCs-H) remained multipotent, capable of differentiation into osteogenic, chondrogenic, and adipogenic lineages. In addition, hAMSCs-H grew faster and exhibited less cell death. Furthermore, hAMSCs-H had greater motility than normoxia-cultured hAMSCs and exhibited greater homing ability to glioblastoma (GBM) derived from brain tumor-initiating cells from our patients in vitro and in vivo. Importantly, hAMSCs-H did not transform into tumor-associated fibroblasts in vitro and were not tumorigenic in vivo. Rather, hAMSCs-H promoted the differentiation of brain cancer cells in vitro and in vivo. These findings suggest an alternative culturing technique that can enhance the function of hAMSCs, which may be necessary for their use in the treatment of various pathologies including stroke, myocardial infarction, amyotrophic lateral sclerosis, and GBM.Mesenchymal stem cells (MSCs) are multipotent cells, isolated from the bone marrow, adipose tissue, and muscle, among others. They are clonally expansive, with the capacity to differentiate into osteocytes, adipocytes, and chondrocytes.1, 2 MSCs are widely studied for their regenerative potential, tissue preservation capabilities, anti-inflammatory properties, and anticancer therapeutic potential.3, 4, 5 MSCs can serve as vehicles for delivering effective targeted therapy to primary brain cancer and metastatic cancer.6, 7, 8Notwithstanding aggressive treatment of primary brain cancer (glioblastoma (GBM)) with surgical resection, chemotherapy, and radiotherapy, the median survival following diagnosis is 14.6 months.9, 10, 11, 12, 13, 14, 15 GBM-targeted therapy using neural stem cells and MSCs as vehicles for therapeutic agents is a promising strategy.16 MSCs seem to be the ideal stem cells, as they are autologous, easily collected, and easily re-implanted.17, 18 The most commonly used MSCs are bone marrow-derived MSCs (BM-MSCs) and human adipose-derived MSCs (hAMSCs). Compared with BM-MSCs, hAMSCs are easier to obtain.19, 20Despite the potential utility of hAMSCs, their use is hampered by their low concentration within tissues.21, 22 Thus, in vitro expansion of hAMSCs is necessary. Compared with BM-MSCs, hAMSCs are more genetically and morphologically stable in long-term culture.19, 20 Nevertheless, current culturing conditions for both BM-MSCs and hAMSCs show a progressive decrease in viability and proliferative ability, and an increase in senescence ratio for these stem cells with time.23, 24, 25, 26, 27, 28, 29 Typically, hAMSCs are cultured under ambient conditions with 21% oxygen in vitro.30 However, physiologically, hAMSCs exist at much lower oxygen tensions, between 1 and 14%.31, 32 As a result of the limitations of culturing under normoxia, we investigated the effect of hypoxia on intraoperatively obtained hAMSCs by assessing proliferation, survival, differentiation, tumor formation, tumor tropism, and migration in vitro and in vivo in a rodent model with a human brain cancer. hAMSCs have been reported to transform into tumor-associated fibroblasts (TAFs), which can potentially support tumor growth and promote malignant phenotypes.33, 34 Yet, no studies have reported on the changes that may occur in hypoxia-cultured hAMSCs after they are exposed to brain cancer, both in vitro and in vivo. An understanding of the effects of hypoxia on hAMSCs35 is critical for its potential therapeutic applications including in the treatment of brain tumors, stroke, neuro-degenerative diseases such as multiple sclerosis, and dementia (Figure 1a).Open in a separate windowFigure 1Primary human adipose-derived cells cultured in hypoxia (hAMSCs-H) and normoxia (hAMSCs-N) are both MSCs but normoxia-cultured cells show increased signs of senescence, such as increased area and elongated morphology, compared with hypoxia-cultured cells. (a) hAMSCs were isolated from human fat tissue and cultured in hypoxic (1.5% oxygen) or normoxic (21% oxygen) conditions in vitro. The viability, mobility, tumor tropism, safety, and tumorigenic potential were subsequently compared in vitro and in vivo. (b) Differentiation assay. hAMSCs were cultured in control media and differentiation media for 3 weeks, 10 days after the second passage. Three different stains were performed to assess differentiation capabilities (scale bar, 100 μm). (c) Flow cytometric analysis was performed to confirm the absence of CD31-, CD34-, and CD45-positive cells in both cell cultures. In addition, primary hAMSC cultures expressed high levels of CD73, CD90, and CD105, both in hypoxic and normoxic culture conditions at day 10 after passage 2. (d) Representative images of cell morphologies of hAMSCs on 2D surface (scale bar, 200 μm). (e) Schematic of 3D-nanopatterned surface used to assess morphology and motility. (f) Images of cell morphologies of hAMSCs on 3D-nanopatterned surface (scale bar, 200 μm). (g–j) The length, width, area, and length-to-width ratio were measured and compared after cell aligned on the nanopattern surface. Error bars represent S.E.M. *P<0.05, **P<0.01, N.S., not significant  相似文献   
3.
A series of pharmacophoric hybrids of ameltolide-gamma-aminobutyric acid (GABA)-amides was designed, synthesized, and evaluated for their anticonvulsant and neurotoxic properties. Initial anticonvulsant screening was performed using intraperitoneal (ip) maximal electroshock-induced seizure (MES), subcutaneous pentylenetetrazole (scPTZ), and subcutaneous picrotoxin (scPIC)-induced seizure threshold tests. All the compounds had improved lipophilicity and the pharmacological activity profile confirmed their blood-brain barrier penetration. The titled compounds showed promising activity in scPIC screen indicating the involvement of GABA-mediation. Compound 4-(2-(2,6-dimethylaminophenylamino)-2-oxoethylamino)-N-(2,6-dimethylphenyl) butanamide (7) emerged as the most potent derivative effective in all the three animal models of seizure with no neurotoxicity at the anticonvulsant dose.  相似文献   
4.
RNA interference (RNAi) denotes sequence-specific mRNA degradation induced by short interfering double-stranded RNA (siRNA) and has become a revolutionary tool for functional annotation of mammalian genes, as well as for development of novel therapeutics. The practical applications of RNAi are usually achieved by expressing short hairpin RNAs (shRNAs) or siRNAs in cells. However, a major technical challenge is to simultaneously express multiple siRNAs to silence one or more genes. We previously developed pSOS system, in which siRNA duplexes are made from oligo templates driven by opposing U6 and H1 promoters. While effective, it is not equipped to express multiple siRNAs in a single vector. Gibson DNA Assembly (GDA) is an in vitro recombination system that has the capacity to assemble multiple overlapping DNA molecules in a single isothermal step. Here, we developed a GDA-based pSOK assembly system for constructing single vectors that express multiple siRNA sites. The assembly fragments were generated by PCR amplifications from the U6-H1 template vector pB2B. GDA assembly specificity was conferred by the overlapping unique siRNA sequences of insert fragments. To prove the technical feasibility, we constructed pSOK vectors that contain four siRNA sites and three siRNA sites targeting human and mouse β-catenin, respectively. The assembly reactions were efficient, and candidate clones were readily identified by PCR screening. Multiple β-catenin siRNAs effectively silenced endogenous β-catenin expression, inhibited Wnt3A-induced β-catenin/Tcf4 reporter activity and expression of Wnt/β-catenin downstream genes. Silencing β-catenin in mesenchymal stem cells inhibited Wnt3A-induced early osteogenic differentiation and significantly diminished synergistic osteogenic activity between BMP9 and Wnt3A in vitro and in vivo. These findings demonstrate that the GDA-based pSOK system has been proven simplistic, effective and versatile for simultaneous expression of multiple siRNAs. Thus, the reported pSOK system should be a valuable tool for gene function studies and development of novel therapeutics.  相似文献   
5.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号