首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   707篇
  免费   93篇
  800篇
  2023年   7篇
  2022年   16篇
  2021年   30篇
  2020年   16篇
  2019年   9篇
  2018年   33篇
  2017年   21篇
  2016年   37篇
  2015年   24篇
  2014年   37篇
  2013年   55篇
  2012年   46篇
  2011年   55篇
  2010年   25篇
  2009年   30篇
  2008年   35篇
  2007年   25篇
  2006年   32篇
  2005年   20篇
  2004年   23篇
  2003年   21篇
  2002年   14篇
  2001年   11篇
  2000年   14篇
  1999年   10篇
  1998年   5篇
  1996年   4篇
  1994年   6篇
  1992年   7篇
  1991年   8篇
  1990年   4篇
  1987年   3篇
  1986年   7篇
  1985年   6篇
  1984年   3篇
  1983年   6篇
  1982年   3篇
  1980年   5篇
  1979年   7篇
  1978年   5篇
  1977年   5篇
  1976年   7篇
  1975年   5篇
  1973年   3篇
  1972年   4篇
  1971年   6篇
  1970年   6篇
  1969年   12篇
  1968年   6篇
  1967年   4篇
排序方式: 共有800条查询结果,搜索用时 0 毫秒
1.
Some P-450 systems, notably aromatase and 14-demethylase catalyse not only the hydroxylate reaction but also the oxidation of an alcohol into a carbonyl compound as well as a C---C bond cleavage process. All these reactions occur at the same active site. A somewhat analogous situation is noted with 17-hydroxylase-17,20-lyase that participates in hydroxylation as well as C---C bond cleavage process. The C---C bond cleavage reactions catalysed by the above enzymes conform to the general equation:

It is argued that all three types of reaction catalyzed by these enzymes may be viewed as variations on a common theme. In P-450 dependent hydroxylation the initially formed FeIII---O---O. species is converted into FeIII---O---OH and the heterolysis of the oxygen—oxygen bond of the latter then gives the oxo-derivative for which a number of canonical structures are possible; for example FeV = O ↔ (+.)FeIV = O ↔ FeIV---O.. One of these, FeIV---O. behaves like an alkoxyl radical and participates in hydrogen abstraction from C---H bond to produce FeIV---OH and carbon radical. The latter is then quenched by the delivery of hydroxyl radical from FeIV---OH. The latter species may thus be regarded as a carrier of hydroxyl radical. We have proposed that the C---C bond cleavage reaction occurs through the participation of the FeIII---O---OH species that is trapped by the electrophilic property of the carbonyl compound giving a peroxide adduct that fragments to produce an acyl—carbon cleavage. Scientific developments leading up to this conclusion are considered. In the first author's views,

“The study of mechanisms is not a scientific but a cultural activity. Mechanisms do not aim at an absolute truth but are intended to be a “running” commentary on the status of knowledge in a field. As the structural knowledge in a field advances Mechanisms evolve to take note of the new findings. Just as a constructive “running” commentary provides the stimulus for higher standards of performance, so Mechanisms call for better and firmer structural information from their practitioners”.  相似文献   

2.
Improper timing of artificial insemination with respect to ovulation is one of the major factors hampering the conception rate in buffalo. The present study was an attempt to relate physio-chemical changes in estrual mucus to subsequent pregnancy status in order to find their optimal values for determining the time for artificial insemination (AI). Serum estradiol, total protein and dry matter contents of estrual mucus were evaluated to predict the subsequent pregnancy in 36 buffalo during October 1988 to February 1989. Serum estradiol was determined by radioimmunoassay (RIA); spinnbarkeit, dry matter and total protein were determined by standard methods. Multivariate probit analyses were carried out to relate these variables to subsequent pregnancy status. Elasticity and protein concentration were significantly related to prediction probability of pregnancy status, and they predicted the pregnancy status 86% of the times correctly (P < 0.05). The probability of pregnant animals being correctly classified was 0.76, whereas the corresponding value for non-pregnant animals was 0.95. The present study demonstrated the possibility of using such a statistical model on mucus characteristics for determining proper AI time for better conception rates in Nili-Ravi water buffalo.  相似文献   
3.
1. Evidence is presented that cyclic AMP inhibits the incorporation of l-[4,5-(3)H]leucine into protein in a cell-free system from rat liver. This inhibition occurs after aminoacyl-tRNA formation. 2. Microsomal fractions, isolated after the incubation of postmitochondrial supernatant with cyclic AMP and ATP, show a diminished ability to synthesize protein. Both cyclic AMP and ATP are required for this effect. 3. A possible physiological role for the anti-anabolic action of cyclic AMP is discussed in terms of the control of gluconeogenesis.  相似文献   
4.
5.
Convenient syntheses of 6β-tritiated Δ7-cholestenol and 3α-tritiated Δ7-cholestene-3β,5α-diol are described. It was shown that the conversion of 6β-tritiated Δ7-cholestenol into cholesterol is accompanied by the complete retention of label. It was unambiguously established that the overall reaction leading to the introduction of the double bond in the 5,6-position in cholesterol occurs via a cis-elimination involving the 5α- and 6α-hydrogen atoms and that during this process the 6β-hydrogen atom remains completely undisturbed. Metabolic studies with 3α-tritiated Δ7-cholestene-3β,5α-diol revealed that under anaerobic conditions the compound is not converted into cholesterol. This observation, coupled with the previous work of Slaytor & Bloch (1965), is interpreted to exclude a hydroxylation–dehydration mechanism for the origin of the 5,6-double bond in cholesterol. It was also shown that under aerobic conditions 3α-tritiated Δ7-cholestene-3β,5α-diol is efficiently converted into cholesterol and that this conversion occurs through the intermediacy of 7-dehydrocholesterol. Cumulative experimental evidence presented in this paper and elsewhere is used to suggest that the 5,6-double bond in cholesterol originates through an oxygen-dependent dehydrogenation process and a hypothetical mechanism for this and related reactions is outlined.  相似文献   
6.
M Akhtar  D E Stevenson  D Gani 《Biochemistry》1990,29(33):7648-7660
L-Methionine decarboxylase from Dryopteris filix-mas catalyzes the decarboxylation of L-methionine and a range of straight- and branched-chain L-amino acids to give the corresponding amine products. The deuterium solvent isotope effects for the decarboxylation of (2S)-methionine are D(V/K) = 6.5 and DV = 2.3, for (2S)-valine are D(V/K) = 1.9 and DV = 2.6, and for (2S)-leucine are D(V/K) = 2.5 and DV = 1.0 at pL 5.5. At pL 6.0 and above, where the value of kcat for all of the substrates is low, the solvent isotope effects on Vmax for methionine are 1.1-1.2 whereas the effects on V/K remain unchanged, indicating that the solvent-sensitive transition state occurs before the first irreversible step, carbon dioxide desorption. The enzyme also catalyzes an abortive decarboxylation-transamination reaction in which the coenzyme is converted to pyridoxamine phosphate [Stevenson, D. E., Akhtar, M., & Gani, D. (1990a) Biochemistry (first paper of three in this issue)]. At very high concentration, the product amine can promote transamination of the coenzyme. However, the reaction occurs infrequently and does not influence the partitioning between decarboxylation and substrate-mediated abortive transamination under steady-state turnover conditions. The partition ratio, normal catalytic versus abortive events, can be determined from the amount of substrate consumed by a known amount of enzyme at infinite time, and the rate of inactivation can be determined by measuring the decrease in enzyme activity with respect to time. For methionine, the values of Km as determined from double-reciprocal plots of concentration versus inactivation rate are the same as those calculated from initial catalytic (decarboxylation) rate data, indicating that a single common intermediate partitions between product formation and slow transamination. The partition ratio is sensitive to changes in pH and is also dependent upon the structure of the substrate; methionine causes less frequent inactivation than either valine or leucine. The pH dependence of the partition ratio with methionine as substrate is very similar to that for V/K. Both curves show a sharp increase at approximately pH 6.25, indicating that a catalytic group on the enzyme simultaneously suppresses the abortive reaction and enhances physiological reaction in its unprotonated state. Experiments conducted in deuterium oxide allowed the solvent isotope effects for the partition ratio and the abortive reaction to be determined.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   
7.
Culex tritaeniorhynchus females infected with the microsporidian Nosema algerae, and uninfected control females were compared for susceptibility to infection with West Nile (WN) virus and for the ability to transmit virus. When fed on a high titered dose fo virus, 95% of the control females became infected, whereas only 65% of the N. algerae-infected females were infected with WN virus. However, at two lower viral doses, no differences in susceptibility were observed. No significant differences in transmission ability were found between the N. algerae-infected and control females when tested at 10, 14, and 21 days after infection with WN virus. Also, in mosquitoes dually infected with N. algerae and WN virus, neither agent affected the ability of the other to replicate.  相似文献   
8.
Root exudates and rhizosheaths of attached soil are important features of growing roots. To elucidate factors involved in rhizosheath formation, wild-type (WT) barley (Hordeum vulgare L. cv. Pallas) and a root hairless mutant, bald root barley (brb), were investigated with a combination of physiological, biochemical, and immunochemical assays. When grown in soil, WT barley roots bound ∼5-fold more soil than brb per unit root length. High molecular weight (HMW) polysaccharide exudates of brb roots had less soil-binding capacity than those of WT root exudates. Carbohydrate and glycan monoclonal antibody analyses of HMW polysaccharide exudates indicated differing glycan profiles. Relative to WT plants, root exudates of brb had reduced signals for arabinogalactan-protein (AGP), extensin, and heteroxylan epitopes. In contrast, the root exudate of 2-week-old brb plants contained ∼25-fold more detectable xyloglucan epitope relative to WT. Root system immunoprints confirmed the higher levels of release of the xyloglucan epitope from brb root apices and root axes relative to WT. Epitope detection with anion-exchange chromatography indicated that the increased detection of xyloglucan in brb exudates was due to enhanced abundance of a neutral polymer. Conversely, brb root exudates contained decreased amounts of an acidic polymer, with soil-binding properties, containing the xyloglucan epitope and glycoprotein and heteroxylan epitopes relative to WT. We, therefore, propose that, in addition to physically structuring soil particles, root hairs facilitate rhizosheath formation by releasing a soil-binding polysaccharide complex.

The root exudate of a root hairless mutant of barley, relative to wild type, has an altered pattern of polysaccharide epitopes and lesser amounts of an acidic soil-binding polysaccharide complex.  相似文献   
9.
Glucose oxidase (GOD) was immobilized on cellulose acetate-polymethylmethacrylate (CA-PMMA) membrane. The immobilized GOD showed better performance as compared to the free enzyme in terms of thermal stability retaining 46% of the original activity at 70 degrees C where the original activity corresponded to that obtained at 20 degrees C. FT-IR and SEM were employed to study the membrane morphology and structure after treatment at 70 degrees C. The pH profile of the immobilized and the free enzyme was found to be similar. A 2.4-fold increase in Km value was observed after immobilization whereas Vmax value was lower for the immobilized GOD. Immobilized glucose oxidase showed improved operational stability by maintaining 33% of the initial activity after 35 cycles of repeated use and was found to retain 94% of activity after 1 month storage period. Improved resistance against urea denaturation was achieved and the immobilized glucose oxidase retained 50% of the activity without urea in the presence of 5M urea whereas free enzyme retained only 8% activity.  相似文献   
10.
Detrimental effects of hyperaccumulation of the aromatic amino acid phenylalanine (Phe) in animals, known as phenylketonuria, are mitigated by excretion of Phe derivatives; however, how plants endure Phe accumulating conditions in the absence of an excretion system is currently unknown. To achieve Phe hyperaccumulation in a plant system, we simultaneously decreased in petunia flowers expression of all three Phe ammonia lyase (PAL) isoforms that catalyze the non‐oxidative deamination of Phe to trans‐cinnamic acid, the committed step for the major pathway of Phe metabolism. A total decrease in PAL activity by 81–94% led to an 18‐fold expansion of the internal Phe pool. Phe accumulation had multifaceted intercompartmental effects on aromatic amino acid metabolism. It resulted in a decrease in the overall flux through the shikimate pathway, and a redirection of carbon flux toward the shikimate‐derived aromatic amino acids tyrosine and tryptophan. Accumulation of Phe did not lead to an increase in flux toward phenylacetaldehyde, for which Phe is a direct precursor. Metabolic flux analysis revealed this to be due to the presence of a distinct metabolically inactive pool of Phe, likely localized in the vacuole. We have identified a vacuolar cationic amino acid transporter (PhCAT2) that contributes to sequestering excess of Phe in the vacuole. In vitro assays confirmed PhCAT2 can transport Phe, and decreased PhCAT2 expression in PAL‐RNAi transgenic plants resulted in 1.6‐fold increase in phenylacetaldehyde emission. These results demonstrate mechanisms by which plants maintain intercompartmental aromatic amino acid homeostasis, and provide critical insight for future phenylpropanoid metabolic engineering strategies.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号