首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
  2023年   2篇
  2010年   1篇
排序方式: 共有3条查询结果,搜索用时 0 毫秒
1
1.
A new model for the mechanochemical response of smooth muscle is presented. The focus is on the res- ponse of the actin–myosin complex and on the related generation of force (or stress). The chemical (kinetic) model describes the cross-bridge interactions with the thin filament in which the calcium-dependent myosin phosphorylation is the only regulatory mechanism. The new mechanical model is based on Hill’s three-component model and it includes one internal state variable that describes the contraction/relaxation of the contractile units. It is characterized by a strain-energy function and an evolution law incorporating only a few material parameters with clear physical meaning. The proposed model satisfies the second law of thermodynamics. The results of the combined coupled model are broadly consistent with isometric and isotonic experiments on smooth muscle tissue. The simulations suggest that the matrix in which the actin–myosin complex is embedded does have a viscous property. It is straightforward for implementation into a finite element program in order to solve more complex boundary-value problems such as the control of short-term changes in lumen diameter of arteries due to mechanochemical signals.  相似文献   
2.
Biomechanics and Modeling in Mechanobiology - Hutchinson–Gilford Progeria Syndrome results in rapid aging and severe cardiovascular sequelae that accelerate near end-of-life. We found a...  相似文献   
3.
Biomechanics and Modeling in Mechanobiology - Pregnancy associates with dramatic changes in maternal cardiovascular physiology that ensure that the utero-placental circulation can support the...  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号