首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   47篇
  免费   5篇
  2018年   1篇
  2017年   1篇
  2015年   1篇
  2014年   2篇
  2013年   1篇
  2012年   4篇
  2011年   5篇
  2010年   1篇
  2009年   2篇
  2008年   6篇
  2007年   4篇
  2006年   2篇
  2004年   2篇
  2003年   3篇
  2002年   1篇
  2001年   2篇
  2000年   4篇
  1999年   1篇
  1997年   1篇
  1996年   2篇
  1993年   1篇
  1992年   2篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
排序方式: 共有52条查询结果,搜索用时 31 毫秒
1.
To determine the level of cerebral blood flow reduction which causes striatal dopamine release, extracellular dopamine and cerebral blood flow was simultaneously determined using in vivo brain dialysis and a hydrogen clearance method, respectively, in the striatum of spontaneously hypertensive rats, before and during experimental cerebral ischemia. The ischemic flow threshold for neurotransmitter dopamine release was found to be 20% of the resting value or 8–10 ml/100g/min of cerebral blood flow, being similar to those for energy and membrane failures.  相似文献   
2.
p21 ras plays as important role in cell proliferation, transformation and differentiation. Recently, the requirement of p21 ras has been suggested for cellular responses induced by stimulation of heterotrimeric G protein-coupled receptors. However, it remains to be determined how agonists for G protein-coupled receptors activate p21 ras in metazoans. We show here that stimulation of the G q protein-coupled angiotensin II (Ang II) receptor causes activation of p21 ras in cardiac myocytes. The p21 ras activation by Ang II is mediated by an increase in the guanine nucleotide exchange activity, but not by an inhibition of the GTPase-activating protein. Ang II causes rapid tyrosine phosphorylation of Shc and its association with Grb2 and mSos-1, a guanine nucleotide exchange factor of p21 ras. This leads to translocation of mSos-1 to the membrane fraction. Shc associates with the SH3 domain of Fyn whose tyrosine kinase activity is activated by Ang II with a similar time course as that of tyrosine phosphorylation of Shc. Ang II-induced increase in the guanine nucleotide exchange activity was inhibited by a peptide ligand specific to the SH3 domain of the Src family tyrosine kinases. These results suggest that an agonist for a pertussis toxin-insensitive G protein-coupled receptor may initiate the cross-talk with non-receptor-type tyrosine kinases, thereby activating p21 ras using a similar mechanism as receptor tyrosine kinase-induced p21 ras activation.  相似文献   
3.
We have recently shown that autophagy is induced by ischemia and reperfusion in the mouse heart in vivo. Ischemia stimulates autophagy through an AMP activated protein kinase (AMPK)-dependent mechanism, whereas reperfusion after ischemia stimulates autophagy through a Beclin 1-dependent, but AMPK-independent, mechanism. Autophagy plays distinct roles during ischemia and reperfusion: autophagy may be protective during ischemia, whereas it may be detrimental during reperfusion. We will discuss the role of AMPK in mediating autophagy during myocardial ischemia in vivo.  相似文献   
4.
A high efficiency transfection protocol employing a common polycationic lipid is described. Using LipofectAMINE, a widely used transfection reagent, we transfected 293T cells with a plasmid harboring the -galactosidase (-gal) gene. The transfection efficiency was determined by direct staining for X-gal. The conventional transfection protocol achieved an efficiency of <40% while our protocol, which employs the repetition of transfection a few times, achieved an efficiency of approximately 80%. Thus, a dramatic increase in transfection efficiency can be obtained by simply repeating transfection with the use of a common polycationic lipid. This method will be useful in many molecular biological experiments.  相似文献   
5.
6.
The present study was designed to examine the effect of a calcium antagonist isradipine (PN200-110: PN) on local cerebral blood flow and brain tissue metabolism after 1-hour supratentorial ischemia induced by bilateral carotid artery ligation (BCL) in spontaneously hypertensive rats (SHR). PN, dissolved in ethanol plus polyethylene glycol 400, diluted with saline to make the final concentration of 0.25mg/ml and 2.5mg/ml, was administered subcutaneously either 30 min prior to BCL or just after the induction of incomplete cerebral ischemia (n = 7 in each group). Vehicle injection was served as a control group (n = 7). Cerebral blood flow in the parietal cortex (CBF) and the cerebellar cortex (CeBF) was measured by hydrogen clearance technique, and the supra- and infratentorial metabolites of the brain frozen in situ were determined by the enzymatic method. Blood pressure was lowered, but CBF was increased by PN administration in pre-BCL treatment study. After 1 hour of BCL, CBF decreased to around 10% or less of the resting value, being insignificant among the groups. Brain adenosine triphosphate was better preserved in PN-administered groups. The increase in lactate level tended to reduce dose dependently by PN treatment. PN also reduced the metabolic alterations in brain tissue with significance, even when administered just after the induction of forebrain ischemia. It is considered that pre- as well as post-BCL administration of PN is beneficial to attenuate the metabolic alterations in incomplete forebrain ischemia in SHR.  相似文献   
7.
Sirt1 protects the heart from aging and stress   总被引:2,自引:0,他引:2  
The prevalence of heart diseases, such as coronary artery disease and congestive heart failure, increases with age. Optimal therapeutic interventions that antagonize aging may reduce the occurrence and mortality of adult heart diseases. We discuss here how molecular mechanisms mediating life span extension affect aging of the heart and its resistance to pathological insults. In particular, we review our recent findings obtained from transgenic mice with cardiac-specific overexpression of Sirt1, which demonstrated delayed aging and protection against oxidative stress in the heart. We propose that activation of known longevity mechanisms in the heart may represent a novel cardioprotection strategy against aging and certain types of cardiac stress, such as oxidative stress.  相似文献   
8.
The signaling mechanisms facilitating cardiomyocyte (CM) differentiation from bone marrow (BM)-derived mesenchymal stem cells (MSCs) are not well understood. 5-Azacytidine (5-Aza), a DNA demethylating agent, induces expression of cardiac-specific genes, such as Nkx2.5 and α-MHC, in mouse BM-derived MSCs. 5-Aza treatment caused significant up-regulation of glycogen synthase kinase (GSK)-3β and down-regulation of β-catenin, whereas it stimulated GSK-3α expression only modestly. The promoter region of GSK-3β was heavily methylated in control MSCs, but was demethylated by 5-Aza. Although overexpression of GSK-3β potently induced CM differentiation, that of GSK-3α induced markers of neuronal and chondrocyte differentiation. GSK-3 inhibitors, including LiCl, SB 216743, and BIO, abolished 5-Aza-induced up-regulation of CM-specific genes, suggesting that GSK-3 is necessary and sufficient for CM differentiation in MSCs. Although specific knockdown of endogenous GSK-3β abolished 5-Aza-induced expression of cardiac specific genes, surprisingly, that of GSK-3α facilitated CM differentiation in MSCs. Although GSK-3β is found in both the cytosol and nucleus in MSCs, GSK-3α is localized primarily in the nucleus. Nuclear-specific overexpression of GSK-3β failed to stimulate CM differentiation. Down-regulation of β-catenin mediates GSK-3β-induced CM differentiation in MSCs, whereas up-regulation of c-Jun plays an important role in mediating CM differentiation induced by GSK-3α knockdown. These results suggest that GSK-3α and GSK-3β have distinct roles in regulating CM differentiation in BM-derived MSCs. GSK-3β in the cytosol induces CM differentiation of MSCs through down-regulation of β-catenin. In contrast, GSK-3α in the nucleus inhibits CM differentiation through down-regulation of c-Jun.  相似文献   
9.
10.
Cerebral blood flow (CBF) and cerebellar blood flow (CeBF) were measured and correlated with brain lactate, pyruvate and adenosine triphosphate concentrations from groups representing 3-week old suckling (n = 10), 18–22-week old adult (n = 9) and 70-week old aged (n = 7) Sprague-Dawley rats before and during bilateral carotid occlusion (BCO). The steal ratio, calculated as the ratio of %control CBF to %control CeBF, was 1.02 ± 0.06 (mean ± SEM) at 60 minutes of BCO in adult rats that exhibited normal levels of brain metabolites. By contrast, the ratios significantly decreased to 0.74 ± 0.06 in suckling rats and 0.69 ± 0.06 in aged rats with simultaneous increases by 2.4 to 2.9-fold of tissue lactate. Pyruvate and lactate/pyruvate ratio also increased by 1.4 to 1.8 times control in both suckling and aged rats. We conclude that there is age-related steal phenomenon occurring with blood flow during BCO. Ischemic derangement of the brain metabolism is in part related to poor blood supply from the posterior circulation in suckling and aged rats.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号