首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   34篇
  免费   3篇
  2023年   1篇
  2018年   1篇
  2017年   1篇
  2016年   2篇
  2015年   2篇
  2013年   2篇
  2012年   2篇
  2011年   4篇
  2010年   1篇
  2009年   3篇
  2008年   3篇
  2007年   1篇
  2006年   1篇
  2004年   1篇
  2002年   1篇
  2000年   1篇
  1999年   3篇
  1998年   2篇
  1997年   1篇
  1996年   1篇
  1993年   1篇
  1986年   1篇
  1977年   1篇
排序方式: 共有37条查询结果,搜索用时 15 毫秒
1.
Single batrachotoxin-activated sodium channels from rat brain were modified by trimethyloxonium (TMO) after incorporation in planar lipid bilayers. TMO modification eliminated saxitoxin (STX) sensitivity, reduced the single channel conductance by 37%, and reduced calcium block of inward sodium currents. These effects always occurred concomitantly, in an all-or-none fashion. Calcium and STX protected sodium channels from TMO modification with potencies similar to their affinities for block. Calcium inhibited STX binding to rat brain membrane vesicles and relieved toxin block of channels in bilayers, apparently by competing with STX for the toxin binding site. These results suggest that toxins, permeant cations, and blocking cations can interact with a common site on the sodium channel near the extracellular surface. It is likely that permeant cations transiently bind to this superficial site, as the first of several steps in passing inward through the channel.  相似文献   
2.
3.
Resistance to conventional anticancer therapies in patients with advanced solid tumors has prompted the need of alternative cancer therapies. Moreover, the success of novel cancer therapies depends on their selectivity for cancer cells with limited toxicity to normal tissues. Several decades after Coley's work a variety of natural and genetically modified non-pathogenic bacterial species are being explored as potential antitumor agents, either to provide direct tumoricidal effects or to deliver tumoricidal molecules. Live, attenuated or genetically modified non-pathogenic bacterial species are capable of multiplying selectively in tumors and inhibiting their growth. Due to their selectivity for tumor tissues, these bacteria and their spores also serve as ideal vectors for delivering therapeutic proteins to tumors. Bacterial toxins too have emerged as promising cancer treatment strategy. The most potential and promising strategy is bacteria based gene-directed enzyme prodrug therapy. Although it has shown successful results in vivo yet further investigation about the targeting mechanisms of the bacteria are required to make it a complete therapeutic approach in cancer treatment.  相似文献   
4.
Parkinson’s disease (PD) is a chronic neurodegenerative disorder characterized by the loss of dopamine neurons in the substantia nigra, decreased striatal dopamine levels, and consequent extrapyramidal motor dysfunction. Recent evidence indicates that cyclin-dependent kinase 5 (Cdk5) is inappropriately activated in several neurodegenerative conditions, including PD. To date, strategies to specifically inhibit Cdk5 hyperactivity have not been successful without affecting normal Cdk5 activity. Previously we reported that TFP5 peptide has neuroprotective effects in animal models of Alzheimer’s disease. Here we show that TFP5/TP5 selective inhibition of Cdk5/p25 hyperactivation in vivo and in vitro rescues nigrostriatal dopaminergic neurodegeneration induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP/MPP+) in a mouse model of PD. TP5 peptide treatment also blocked dopamine depletion in the striatum and improved gait dysfunction after MPTP administration. The neuroprotective effect of TFP5/TP5 peptide is also associated with marked reduction in neuroinflammation and apoptosis. Here we show selective inhibition of Cdk5/p25 ­hyperactivation by TFP5/TP5 peptide, which identifies the kinase as a potential therapeutic target to reduce neurodegeneration in Parkinson’s disease.  相似文献   
5.
The retromer complex, composed of sorting nexin subunits and a Vps26/Vps29/Vps35 trimer, mediates sorting of retrograde cargo from the endosome to the trans-Golgi network. The retromer trimer subcomplex is an effector of Rab7 (Ypt7 in yeast). Whereas endosome targeting of human retromer has been shown to require Rab7-GTP, targeting of yeast retromer to the endosome is independent of Ypt7-GTP and requires the Vps5 and Vps17 retromer sorting nexin subunits. An evolutionarily conserved amino acid segment within Vps35 is required for Ypt7/Rab7 recognition in vivo by both yeast and human retromer, establishing that Rab recognition is a conserved feature of this subunit. Recognition of Ypt7 by retromer is required for its function in retrograde sorting, and in yeast cells lacking the guanine nucleotide exchange factor for Ypt7, retrograde cargo accumulates in endosomes that are decorated with retromer, revealing an additional role for Rab recognition at the cargo export stage of the retromer functional cycle. In addition, yeast retromer trimer antagonizes Ypt7-regulated organelle tethering and fusion of endosomes/vacuoles via recognition of Ypt7. Thus retromer has dual roles in retrograde cargo export and in controlling the fusion dynamics of the late endovacuolar system.  相似文献   
6.
The energy expenditure of the tūī (Prosthemadera novaeseelandiae), a meliphagid endemic to New Zealand, was measured and compared with 20 species of honeyeaters (family Meliphagidae) to determine whether its expenditure is influenced either by life in a moist, temperate climate or an island residence. Body mass in the honeyeaters accounted for 91.5% of the variation in basal rate. The combination of body mass, climate and the maximal limit to an altitudinal distribution explained 98.6% of the variation in basal rate with tropical, low-altitude species having the highest mass-independent rate. The basal rates of meliphagids in tropical highlands are similar to those in temperate lowlands, which may reflect similar food supplies. The tūī mass-independent expenditure appears to reflect an active lifestyle in a temperate climate with no evidence that an island residence influenced its rate, whereas sedentary birds on New Zealand have responded to island life with a depressed basal rate. An effective analysis of the variation in energy expenditure requires the inclusion of the ecological and behavioural characteristics that distinguish species.  相似文献   
7.
8.
Cardiac neural crest cells (CNCC) migrate into the caudal pharynx and arterial pole of the heart to form the outflow septum. Ablation of the CNCC results in arterial pole malalignment and failure of outflow septation, resulting in a common trunk overriding the right ventricle. Unlike preotic cranial crest, the postotic CNCC do not normally regenerate. We applied the hedgehog signaling inhibitor, cyclopamine (Cyc), to chick embryos after CNCC ablation and found normal heart development at day 9 suggesting that the CNCC population was reconstituted. We ablated the CNCC, and labeled the remaining neural tube with DiI/CSRE and applied cyclopamine. Cells migrated from the neural tube in the CNCC-ablated, cyclopamine-treated embryos but not in untreated CNCC-ablated embryos. The newly generated cells followed the CNCC migration pathways, expressed neural crest markers and supported normal heart development. Finally, we tested whether reducing hedgehog signaling caused redeployment of the dorsal–ventral axis of the injured neural tube, allowing generation of new neural crest-like cells. The dorsal neural tube marker, Pax7, was maintained 12 h after CNCC ablation with Cyc treatment but not in the CNCC-ablated alone. This disruption of dorsal–ventral neural patterning permits a new wave of migratory cardiac neural crest-like cells.  相似文献   
9.
The myofibroblastic differentiation of hepatic stellate cells (HSC) is a critical event in liver fibrosis and is part of the final common pathway to cirrhosis in chronic liver disease from all causes. The molecular mechanisms driving HSC differentiation are not fully understood. Because macroscopic tissue stiffening is a feature of fibrotic disease, we hypothesized that mechanical properties of the underlying matrix are a principal determinant of HSC activation. Primary rat HSC were cultured on inert polyacrylamide supports of variable but precisely defined shear modulus (stiffness) coated with different extracellular matrix proteins or poly-L-lysine. HSC differentiation was determined by cell morphology, immunofluorescence staining, and gene expression. HSC became progressively myofibroblastic as substrate stiffness increased on all coating matrices, including Matrigel. The degree rather than speed of HSC activation correlated with substrate stiffness, with cells cultured on supports of intermediate stiffness adopting stable intermediate phenotypes. Quiescent cells on soft supports were able to undergo myofibroblastic differentiation with exposure to stiff supports. Stiffness-dependent differentiation required adhesion to matrix proteins and the generation of mechanical tension. Transforming growth factor-β treatment enhanced differentiation on stiff supports, but was not required. HSC differentiate to myofibroblasts in vitro primarily as a function of the physical rather than the chemical properties of the substrate. HSC require a mechanically stiff substrate, with adhesion to matrix proteins and the generation of mechanical tension, to differentiate. These findings suggest that alterations in liver stiffness are a key factor driving the progression of fibrosis.  相似文献   
10.
We present a mathematical method for acceleration workspace analysis of cooperating multi-finger robot systems using a model of point-contact with friction. A new unified formulation from dynamic equations of cooperating multi-finger robots is derived considering the force and acceleration relationships between the fingers and the object to be handled. From the dynamic equation, maximum translational and rotational acceleration bounds of an object are calculated under given constraints of contact conditions, configurations of fingers, and bounds on the torques of joint actuators for each finger. Here, the rotational acceleration bounds can be applied as an important manipulability index when the multi-finger robot grasps an object. To verify the proposed method, we used a set of case studies with a simple multi-finger mechanism system. The achievable acceleration boundary in task space can be obtained successfully with the proposed method and the acceleration boundary depends on the configurations of fingers.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号