首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14篇
  免费   0篇
  2015年   1篇
  2014年   2篇
  2012年   2篇
  2010年   1篇
  2009年   1篇
  2008年   1篇
  2007年   1篇
  2005年   1篇
  2003年   2篇
  2002年   2篇
排序方式: 共有14条查询结果,搜索用时 31 毫秒
1.
2.
3.
The effects of the phytohormones 6-benzylaminopurine (BAP) and 24-epibrassinolide (EB) on the sizes of nucleoli in the interphase nuclei of root meristem were studied using the silver-staining procedure in wheat species with different ploidy levels (a polyploid series). In addition, the effects of the phytohormones on the cell mitotic activity in the roots of 5-day-old seedlings were studied. The higher the wheat species ploidy level, the higher its sensitivities to BAP and EB were. In diploid wheat, the maximum increase in the nucleolar organizing region (NOR) activity was observed after treatment with considerably higher phytohormone concentrations compared to tetra- and hexaploid wheat species. The phytohormone treatment increased both the sizes and the number of nucleoli in meristematic cells of seedling roots in all wheat species studied. It was assumed that the differences between the responses of wheat species with three different ploidy levels to different concentrations of phytohormones were related to their effects on the methylation/demethylation of cytosine residues in the rDNA promoter region.  相似文献   
4.
5.
Amyloid-β (Aβ) peptide is thought to have a significant role in the progressive memory loss observed in patients with Alzheimer disease and inhibits synaptic plasticity in animal models of learning. We previously demonstrated that brain-derived neurotrophic factor (BDNF) is critical for synaptic AMPA receptor delivery in an in vitro model of eyeblink classical conditioning. Here, we report that acquisition of conditioned responses was significantly attenuated by bath application of oligomeric (200 nm), but not fibrillar, Aβ peptide. Western blotting revealed that BDNF protein expression during conditioning is significantly reduced by treatment with oligomeric Aβ, as were phosphorylation levels of cAMP-response element-binding protein (CREB), Ca2+/calmodulin-dependent protein kinase II (CaMKII), Ca2+/calmodulin-dependent protein kinase IV (CaMKIV), and ERK. However, levels of PKA and PKCζ/λ were unaffected, as was PDK-1. Protein localization studies using confocal imaging indicate that oligomeric Aβ, but not fibrillar or scrambled forms, suppresses colocalization of GluR1 and GluR4 AMPA receptor subunits with synaptophysin, indicating that trafficking of these subunits to synapses during the conditioning procedure is blocked. In contrast, coapplication of BDNF with oligomeric Aβ significantly reversed these findings. Interestingly, a tolloid-like metalloproteinase in turtle, tTLLs (turtle tolloid-like protein), which normally processes the precursor proBDNF into mature BDNF, was found to degrade oligomeric Aβ into small fragments. These data suggest that an Aβ-induced reduction in BDNF, perhaps due to interference in the proteolytic conversion of proBDNF to BDNF, results in inhibition of synaptic AMPA receptor delivery and suppression of the acquisition of conditioning.  相似文献   
6.
The effects of the phytohormones 6-benzylaminopurine (BAP) and 24-epibrassinolide (EB) on the nucleolar sizes in the interphase nuclei of root meristem were studied using the silver-staining procedure in wheat species with different ploidy levels (a polyploid series). In addition, the effects of the phytohormones on the cell mitotic activity in the roots of 5-day-old seedlings were studied. The higher the wheat species ploidy level, the higher its sensitivities to BAP and EB were. In diploid wheat, the maximum increase in the nucleolar organizing region (NOR) activity was observed after treatment with considerably higher phytohormone concentrations compared to tetra- and hexaploid wheat species. The phytohormone treatment increased both the sizes and the number of nucleoli in meristematic cells of seedling roots in all wheat species studied. It was assumed that the differences between the responses of wheat species with three different ploidy levels to different concentrations of phytohormones were related to their effects on the methylation/demethylation of cytosine residues in the rDNA promoter region.  相似文献   
7.
8.
Dysregulation of autophagy contributes to neuronal cell death in several neurodegenerative and lysosomal storage diseases. Markers of autophagy are also increased after traumatic brain injury (TBI), but its mechanisms and function are not known. Following controlled cortical impact (CCI) brain injury in GFP-Lc3 (green fluorescent protein-LC3) transgenic mice, we observed accumulation of autophagosomes in ipsilateral cortex and hippocampus between 1 and 7 d. This accumulation was not due to increased initiation of autophagy but rather to a decrease in clearance of autophagosomes, as reflected by accumulation of the autophagic substrate SQSTM1/p62 (sequestosome 1). This was confirmed by ex vivo studies, which demonstrated impaired autophagic flux in brain slices from injured as compared to control animals. Increased SQSTM1 peaked at d 1–3 but resolved by d 7, suggesting that the defect in autophagy flux is temporary. The early impairment of autophagy is at least in part caused by lysosomal dysfunction, as evidenced by lower protein levels and enzymatic activity of CTSD (cathepsin D). Furthermore, immediately after injury both autophagosomes and SQSTM1 accumulated predominantly in neurons. This was accompanied by appearance of SQSTM1 and ubiquitin-positive puncta in the affected cells, suggesting that, similar to the situation observed in neurodegenerative diseases, impaired autophagy may contribute to neuronal injury. Consistently, GFP-LC3 and SQSTM1 colocalized with markers of both caspase-dependent and caspase-independent cell death in neuronal cells proximal to the injury site. Taken together, our data indicated for the first time that autophagic clearance is impaired early after TBI due to lysosomal dysfunction, and correlates with neuronal cell death.  相似文献   
9.
The process of accumulation of knowledge on wheat and related wild species during the 20th century is briefly reviewed with special reference to the evidence of the recent years on evolution of polyploid wheats and the role of diploid species. The latter serve as potential donors of the genomes, detection of which is particularly important because of the continuing speciation in the tribe Triticeae and artificial development of synthetic forms. The arguments in favor of the donor role for various diploid wheat species and aegilopses from the section Sitopsis are compared. It is stated that in the formation of the both lines of polyploid wheats turgidum-aestivum and timopheevi, diploid Aegilops speltoides acted as a maternal form. In addition to plasmatic genomes, this aegilops species introduced into them also the B and G nuclear subgenomes. A comparison of nucleotide sequences in the variable part of the promoter of evolutionary conserved rRNA genes in polyploid wheats with their counterparts in diploid wheats and aegilopses confirmed the accepted wheat phylogenies.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号