首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   45篇
  免费   4篇
  2021年   1篇
  2018年   2篇
  2015年   5篇
  2014年   1篇
  2013年   5篇
  2012年   3篇
  2011年   2篇
  2010年   1篇
  2009年   6篇
  2008年   6篇
  2007年   2篇
  2006年   2篇
  2005年   2篇
  2004年   2篇
  2003年   1篇
  2002年   2篇
  2001年   2篇
  2000年   1篇
  1999年   1篇
  1993年   1篇
  1983年   1篇
排序方式: 共有49条查询结果,搜索用时 18 毫秒
1.
During a 1-year study of the ciliate faunas of a silty and a sandy site on an intertidal flat in the Westerschelde estuary, a total number of 107 taxa were recorded belonging to at least 52 genera and 15 orders. Our results suggest that physical properties of the sediment were more important in regulating ciliate abundance, diversity and community composition than food availability, predation, temperature or oxygen concentration. Ciliate abundance and diversity were positively related to sediment grain size and the ciliate community of silty sediments was found to be a subset of that of sandy sediments. At the sandy site, where the sediment composition was stable, seasonal changes in the ciliate community were related to changes in food availability and/or temperature. At both the sandy and silty sites, a clear vertical gradient in the ciliate community was observed that appeared to be linked to gradients in food availability and oxygen concentration. These vertical gradients in ciliate community composition, however, were less steep than the measured oxygen gradients, probably due to the presence of oxic microniches in the anoxic zone.  相似文献   
2.
N-terminal modifications of the chemokine RANTES bind to C-C chemokine receptor 5 (CCR5) and block human immunodeficiency virus type 1 (HIV-1) infection with greater efficacy than native RANTES. Modified RANTES compounds induce rapid CCR5 internalization and much slower receptor reexpression than native RANTES, suggesting that receptor sequestration is one mode of anti-HIV activity. The rates of CCR5 internalization and reexpression were compared using the potent n-nonanoyl (NNY)-RANTES derivative and CD4(+) T cells derived from donors with different CCR5 gene polymorphisms. NNY-RANTES caused even more rapid receptor internalization and slower reexpression than aminooxypentane (AOP)-RANTES. Polymorphisms in the promoter and coding regions of CCR5 significantly affected the receptor reexpression rate after exposure of cells to NNY-RANTES. These observations may be relevant for understanding the protective effects of different CCR5 genotypes against HIV-1 disease progression.  相似文献   
3.

Objectives

The marine benthic nitrogen cycle is affected by both the presence and activity of macrofauna and the diversity of N-cycling microbes. However, integrated research simultaneously investigating macrofauna, microbes and N-cycling is lacking. We investigated spatio-temporal patterns in microbial community composition and diversity, macrofaunal abundance and their sediment reworking activity, and N-cycling in seven subtidal stations in the Southern North Sea.

Spatio-Temporal Patterns of the Microbial Communities

Our results indicated that bacteria (total and β-AOB) showed more spatio-temporal variation than archaea (total and AOA) as sedimentation of organic matter and the subsequent changes in the environment had a stronger impact on their community composition and diversity indices in our study area. However, spatio-temporal patterns of total bacterial and β-AOB communities were different and related to the availability of ammonium for the autotrophic β-AOB. Highest bacterial richness and diversity were observed in June at the timing of the phytoplankton bloom deposition, while richness of β-AOB as well as AOA peaked in September. Total archaeal community showed no temporal variation in diversity indices.

Macrofauna, Microbes and the Benthic N-Cycle

Distance based linear models revealed that, independent from the effect of grain size and the quality and quantity of sediment organic matter, nitrification and N-mineralization were affected by respectively the diversity of metabolically active β-AOB and AOA, and the total bacteria, near the sediment-water interface. Separate models demonstrated a significant and independent effect of macrofaunal activities on community composition and richness of total bacteria, and diversity indices of metabolically active AOA. Diversity of β-AOB was significantly affected by macrofaunal abundance. Our results support the link between microbial biodiversity and ecosystem functioning in marine sediments, and provided broad correlative support for the hypothesis that this relationship is modulated by macrofaunal activity. We hypothesized that the latter effect can be explained by their bioturbating and bio-irrigating activities, increasing the spatial complexity of the biogeochemical environment.  相似文献   
4.
Biodiversity–ecosystem functioning experiments typically inspect functioning in randomly composed communities, representing broad gradients of taxonomic richness. We tested if the resulting evenness gradients and evenness–functioning relationships reflect those found in communities facing evenness loss caused by anthropogenic stressors. To this end, we exposed marine benthic diatom communities to a series of treatments with the herbicide atrazine, and analysed the relationship between the resulting gradients of evenness and ecosystem functioning (primary production, energy content and sediment stabilization). Atrazine exposure resulted in narrower evenness gradients and steeper evenness–functioning relations than produced by the design of random community assembly. The disproportionately large decrease in functioning following atrazine treatment was related to selective atrazine effects on the species that contributed most to the ecosystem functions considered. Our findings demonstrate that the sensitivity to stress and the contribution to ecosystem functioning at the species level should be both considered to understand biodiversity and ecosystem functioning under anthropogenic stress. Synthesis Biodiversity loss affects ecosystem functioning, yet biodiversity–ecosystem functioning relations have mainly been investigated using communities with random species loss. In nature however, species are lost according to their sensitivity to environmental stress. In the present study, biodiversity loss and biodiversity–ecosystem functioning relations in randomly composed diatom communities were compared to those induced by the pesticide atrazine. Stress exposure resulted in smaller biodiversity loss but steeper decrease in functioning than in randomly composed communities, due to selective atrazine effects on the best performing species. Therefore, species‐specific sensitivity and contribution to ecosystem functioning need to be considered to predict biodiversity and ecosystem functioning under anthropogenic stress.  相似文献   
5.
Benthic diatoms are dominant primary producers in intertidal marine sediments, which are characterized by widely fluctuating and often extreme light conditions. To cope with sudden increases in light intensity, benthic diatoms display both behavioural and physiological photoprotection mechanisms. Behavioural photoprotection is restricted to raphid pennate diatoms, which possess a raphe system that enables motility and hence positioning in sediment light gradients (e.g. via vertical migration into the sediment). The main physiological photoprotection mechanism is to dissipate excess light energy as heat, measured as Non-Photochemical Quenching (NPQ) of chlorophyll fluorescence. A trade-off between vertical migration and physiological photoprotection (NPQ) in benthic diatoms has been hypothesized before, but this has never been formally tested. We exposed five epipelic diatom species (which move in between sediment particles) and four epipsammic diatom species (which live in close association with individual sand grains) to high light conditions, and characterized both NPQ and the relative magnitude of the migratory response to high light. Our results reveal the absence of a significant downward migratory response in an araphid diatom, but also in several raphid epipsammic diatoms, while all epipelic species showed a significant migratory response upon high light exposure. In all epipsammic species the upregulation of NPQ was rapid and pronounced; NPQ relaxation in low light conditions, however, occurred faster in the araphid diatom, compared with the raphid epipsammic species. In contrast, all epipelic species lacked a strong and flexible NPQ response and showed higher susceptibility to photodamage when not able to migrate. While overall our results support the vertical migration-NPQ trade-off, the lack of strong relationships between the capacity for vertical migration and NPQ within the epipsammic and epipelic groups suggests that other factors as well, such as cell size, substrate type and photoacclimation, may influence photoprotective strategies.  相似文献   
6.
7.
Muylaert  Koenraad  Van Mieghem  Riet  Sabbe  Koen  Tackx  Micky  Vyverman  Wim 《Hydrobiologia》2000,432(1-3):25-36
Freshwater tidal estuaries comprise the most upstream reaches of estuaries and are often characterised by the presence of dense bacterial and algal populations which provide a large food source for bacterivorous and algivorous protists. In 1996, the protistan community in the freshwater tidal reaches of the Schelde estuary was monitored to evaluate whether these high food levels are reflected in a similarly high heterotrophic protistan biomass. Protistan distribution patterns were compared to those of metazoan zooplankton to evaluate the possible role of top-down regulation of protists by metazoans. Apart from the algivorous sarcodine Asterocaelum, which reached high densities in summer, heterotrophic protistan biomass was dominated by ciliates and, second in importance, heterotrophic nanoflagellates (HNAN). HNAN abundance was low (annual average 2490 cells ml–1) and did not display large seasonal variation. It is hypothesised that HNAN were top-down controlled by oligotrich ciliates throughout the year and by rotifers in summer. Ciliate abundance was generally relatively high (annual average 65 cells ml–1) and peaked in winter (maximum 450 cells ml–1). The decline of ciliate populations in summer was ascribed to grazing by rotifers, which developed dense populations in that season. In winter, ciliate populations were probably regulated `internally' by carnivorous ciliates (haptorids and Suctoria). Our observations suggest that, in this type of productive ecosystems, the microbial food web is mainly top-down controlled rather than regulated by food availability.  相似文献   
8.
Aims: Evaluation of a sampling method to recover free‐living protozoa (FLP) from plastic surfaces. Application of the method on different areas inside domestic refrigerators. Methods and Results: Plastic coupons seeded with representatives of FLP were swabbed with cotton wools. The recovery efficiency was the highest for Chilomonas paramecium, followed by Tetrahymena pyriformis and the lowest for Acanthamoeba polyphaga. From 43 refrigerators, 19 and 26 were considered FLP positive when sample cultures were incubated at 7°C and 20°C, respectively. The number of FLP‐positive cultures was the highest in samples taken from vegetable trays followed by discharge gutters, whereas interior walls were rarely FLP positive. Higher numbers of taxa were observed in enrichment cultures incubated at 20°C instead of 7°C. The combination of microscopy and denaturing gradient gel electrophoresis revealed that discharge gutters occasionally were contaminated with a persistent protozoan population of flagellates (Cercozoa) and amoebae (Tubulinea). The FLP‐positive status of refrigerator surfaces was correlated with a high aerobic plate count. Conclusions: The cotton wool sampling method is useful to sample FLP from plastic surfaces. FLP are part of the microbial communities in domestic refrigerators. Significance and Impact of the Study: Knowledge on the occurrence of FLP in food‐related indoor environments is scarce. For the first time, a high protozoan diversity in domestic refrigerators is described.  相似文献   
9.
The quantitative importance and composition of protozoan communities was investigated in sandy and silty intertidal sediments of a polyhaline and a freshwater site in the Schelde estuary. Total biomass of the protozoans studied, integrated over the upper 4 cm of the sediment, ranged from 41 to 597 mg C m–2 and was in the same order of magnitude at the polyhaline and the freshwater intertidal site. Nanoheterotrophs were the dominant protozoans, in terms of both abundance and biomass. Ciliate abundances appeared to be largely determined by physical constraints, namely, the amount of interstitial space and hydrodynamic disturbances. It remains unclear which factors control nanoheterotrophic abundances and biomasses, which showed comparatively little seasonal and between-site fluctuations. Salinity differences were clearly reflected in the protozoan community composition. The dominant role of sessile ciliates is a unique feature of sediments in the freshwater tidal reaches, which can be attributed to the dynamic nature of sedimentation and resuspension processes associated with the maximum turbidity zone. Based on biomass ratios and estimated weight-specific metabolic rates, protozoa possibly accounted for ~29 to 96% of the estimated combined metabolic rate of protozoan and metazoan consumers at our sampling stations in late spring/early autumn. The contribution of protozoa to this combined metabolic rate was higher at the sandy than at the silty stations and was mainly accounted for by the nanoheterotrophs. These data emphasize the potential importance of small protozoa in sediments and suggest that protozoa are important components of benthic food webs.  相似文献   
10.
The synthesis and biological activities of seco C-9,11,21-trisnor-17-methyl-1 alpha,25-dihydroxyvitamin D(3) analogues (D-ring analogues) are described.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号