首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   123篇
  免费   9篇
  132篇
  2024年   1篇
  2023年   1篇
  2021年   3篇
  2020年   1篇
  2019年   2篇
  2018年   5篇
  2017年   3篇
  2016年   3篇
  2015年   11篇
  2013年   12篇
  2012年   7篇
  2011年   6篇
  2010年   3篇
  2009年   4篇
  2008年   5篇
  2007年   9篇
  2006年   10篇
  2005年   3篇
  2004年   6篇
  2003年   8篇
  2002年   11篇
  2001年   3篇
  2000年   2篇
  1999年   1篇
  1998年   1篇
  1996年   1篇
  1995年   1篇
  1994年   1篇
  1993年   1篇
  1992年   1篇
  1991年   2篇
  1990年   2篇
  1987年   1篇
  1974年   1篇
排序方式: 共有132条查询结果,搜索用时 15 毫秒
1.
    
Organic matter degradation in marine environments is essential for the recycling of nutrients, especially under conditions of anoxia where organic matter tends to accumulate. However, little is known about the diversity of the microbial communities responsible for the mineralization of organic matter in the absence of oxygen, as well as the factors controlling their activities. Here, we determined the active heterotrophic prokaryotic community in the sulphidic water column of the Black Sea, an ideal model system, where a tight coupling between carbon, nitrogen and sulphur cycles is expected. Active microorganisms degrading both dissolved organic matter (DOM) and protein extracts were determined using quantitative DNA stable isotope probing incubation experiments. These results were compared with the metabolic potential of metagenome-assembled genomes obtained from the water column. Organic matter incubations showed that groups like Cloacimonetes and Marinimicrobia are generalists degrading DOM. Based on metagenomic profiles the degradation proceeds in a potential interaction with members of the Deltaproteobacteria and Chloroflexi Dehalococcoidia. On the other hand, microbes with small genomes like the bacterial phyla Parcubacteria, Omnitrophica and of the archaeal phylum Woesearchaeota, were the most active, especially in protein-amended incubations, revealing the potential advantage of streamlined microorganisms in highly reduced conditions.  相似文献   
2.
Integrin trafficking regulated by Rab21 is necessary for cytokinesis   总被引:1,自引:0,他引:1  
Adherent cells undergo remarkable changes in shape during cell division. However, the functional interplay between cell adhesion turnover and the mitotic machinery is poorly understood. The endo/exocytic trafficking of integrins is regulated by the small GTPase Rab21, which associates with several integrin alpha subunits. Here, we show that targeted trafficking of integrins to and from the cleavage furrow is required for successful cytokinesis, and that this is regulated by Rab21. Rab21 activity, integrin-Rab21 association, and integrin endocytosis are all necessary for normal cytokinesis, which becomes impaired when integrin-mediated adhesion at the cleavage furrow fails. We also describe a chromosomal deletion and loss of Rab21 gene expression in human cancer, which leads to the accumulation of multinucleate cells. Importantly, reintroduction of Rab21 rescued this phenotype. In conclusion, Rab21-regulated integrin trafficking is essential for normal cell division, and its defects may contribute to multinucleation and genomic instability, which are hallmarks of cancer.  相似文献   
3.
Zou J  Rogers WE  DeWalt SJ  Siemann E 《Oecologia》2006,150(2):272-281
The EICA hypothesis predicts that shifts in allocation of invasive plants give rise to higher growth rates and lower herbivore defense levels in their introduced range than conspecifics in their native range. These changes in traits of invasive plants may also affect ecosystem processes. We conducted an outdoor pot experiment with Chinese tallow tree (Sapium sebiferum, Euphorbiaceae) seedlings from its native (Jiangsu, China, native ecotype) and introduced ranges (Texas, USA, invasive ecotype) to compare their relative performances in its native range and to examine ecotype effects on soil processes with and without fertilization. Consistent with predictions, plant (shoot and root) mass was significantly greater and leaf defoliation tended to be higher, while the root:shoot ratio was lower for the invasive ecotype relative to the native ecotype. Seasonal amounts of soil–plant system CO2 and N2O emissions were higher for the invasive ecotype than for the native ecotype. Soil respiration rates and N2O emission increases from fertilization were also greater for the invasive ecotype than for the native ecotype, while shoot-specific respiration rates (g CO2–C g−1 C day−1) did not differ between ecotypes. Further, soil inorganic N (ammonium and nitrate) was higher, but soil total N was lower for soils with the invasive ecotype than soils with the native ecotype. Compared with native ecotypes, therefore, invasive ecotypes may have developed a competition advantage in accelerating soil processes and promoting more nitrogen uptake through soil–plant direct interaction. The results of this study suggest that soil and ecosystem processes accelerated by variation in traits of invasive plants may have implications for their invasiveness.  相似文献   
4.
Human mesenchymal stem/stromal cells (hMSC) are increasingly used in advanced cellular therapies. The clinical use of hMSCs demands sequential cell expansions. As it is well established that membrane glycerophospholipids (GPL) provide precursors for signaling lipids that modulate cellular functions, we studied the effect of the donor''s age and cell doublings on the GPL profile of human bone marrow MSC (hBMSC). The hBMSCs, which were harvested from five young and five old adults, showed clear compositional changes during expansion seen at the level of lipid classes, lipid species, and acyl chains. The ratio of phosphatidylinositol to phosphatidylserine increased toward the late-passage samples. Furthermore, 20:4n-6-containing species of phosphatidylcholine and phosphatidylethanolamine accumulated while the species containing monounsaturated fatty acids (FA) decreased during passaging. Additionally, in the total FA pool of the cells, 20:4n-6 increased, which happened at the expense of n-3 polyunsaturated FAs, especially 22:6n-3. The GPL and FA correlated with the decreased immunosuppressive capacity of hBMSCs during expansion. Our observations were further supported by alterations in the gene expression levels of several enzymes involved in lipid metabolism and immunomodulation. The results show that extensive expansion of hBMSCs harmfully modulates membrane GPLs, affecting lipid signaling and eventually impairing functionality.  相似文献   
5.
Somatic stem cell (SSC) dysfunction is typical for different progeroid phenotypes in mice with genomic DNA repair defects. MtDNA mutagenesis in mice with defective Polg exonuclease activity also leads to progeroid symptoms, by an unknown mechanism. We found that Polg-Mutator mice had neural (NSC) and hematopoietic progenitor (HPC) dysfunction already from embryogenesis. NSC self-renewal was decreased in vitro, and quiescent NSC amounts were reduced in vivo. HPCs showed abnormal lineage differentiation leading to anemia and lymphopenia. N-acetyl-L-cysteine treatment rescued both NSC and HPC abnormalities, suggesting that subtle ROS/redox changes, induced by mtDNA mutagenesis, modulate SSC function. Our results show that mtDNA mutagenesis affected SSC function early but manifested as respiratory chain deficiency in nondividing tissues in old age. Deletor mice, having mtDNA deletions in postmitotic cells and no progeria, had normal SSCs. We propose that SSC compartment is sensitive to mtDNA mutagenesis, and that mitochondrial dysfunction in SSCs can underlie progeroid manifestations.  相似文献   
6.
    
Microorganisms attached to particles have been shown to be different from free-living microbes and to display diverse metabolic activities. However, little is known about the ecotypes associated with particles and their substrate preference in anoxic marine waters. Here, we investigate the microbial community colonizing particles in the anoxic and sulfide-rich waters of the Black Sea. We incubated beads coated with different substrates in situ at 1000 and 2000 m depth. After 6 h, the particle-attached microbes were dominated by Gamma- and Alpha-proteobacteria, and groups related to the phyla Latescibacteria, Bacteroidetes, Planctomycetes and Firmicutes, with substantial variation across the bead types, indicating that the attaching communities were selected by the substrate. Further laboratory incubations for 7 days suggested the presence of a community of highly specialized taxa. After incubation for 35 days, the microbial composition across all beads and depths was similar and primarily composed of putative sulfur cycling microbes. In addition to the major shared microbial groups, subdominant taxa on chitin and protein-coated beads were detected pointing to specialized microbial degraders. These results highlight the role of particles as sites for attachment and biofilm formation, while the composition of organic matter defined a secondary part of the microbial community.  相似文献   
7.

Background

Myelin is a multilayered proteolipid sheath wrapped around selected axons in the nervous system. Its constituent proteins play major roles in forming of the highly regular membrane structure. P2 is a myelin-specific protein of the fatty acid binding protein (FABP) superfamily, which is able to stack lipid bilayers together, and it is a target for mutations in the human inherited neuropathy Charcot-Marie-Tooth disease. A conserved residue that has been proposed to participate in membrane and fatty acid binding and conformational changes in FABPs is Phe57. This residue is thought to be a gatekeeper for the opening of the portal region upon ligand entry and egress.

Results

We performed a structural characterization of the F57A mutant of human P2. The mutant protein was crystallized in three crystal forms, all of which showed changes in the portal region and helix α2. In addition, the behaviour of the mutant protein upon lipid bilayer binding suggested more unfolding than previously observed for wild-type P2. On the other hand, membrane binding rendered F57A heat-stable, similarly to wild-type P2. Atomistic molecular dynamics simulations showed opening of the side of the discontinuous β barrel, giving important indications on the mechanism of portal region opening and ligand entry into FABPs. The results suggest a central role for Phe57 in regulating the opening of the portal region in human P2 and other FABPs, and the F57A mutation disturbs dynamic cross-correlation networks in the portal region of P2.

Conclusions

Overall, the F57A variant presents similar properties to the P2 patient mutations recently linked to Charcot-Marie-Tooth disease. Our results identify Phe57 as a residue regulating conformational changes that may accompany membrane surface binding and ligand exchange in P2 and other FABPs.
  相似文献   
8.
Introduction of biological control agents to reduce the abundance of exotic invasive plant species is often considered necessary but risky. I used matrix projection models to investigate the current population dynamics of Clidemia hirta (Melastomataceae), an invasive shrub, in two rainforest stands on the island of Hawaii and to predict the efficacy of hypothetical biological control agents in reducing population growth rates. Stage-structured matrix models were parameterized with field data collected over 3 years from 2906 C. hirta plants in a recently invaded forest with an open overstory (Laupahoehoe) and 600 plants in a less recently invaded forest with a closed canopy (Waiakea). Asymptotic population growth rates (λ) for both populations in all years were greater than one, demonstrating that both populations were growing. Composite elasticities were high for the seedling life-history stage and fecundity, and near-term demographic elasticities suggested that changes in seedling survival would have the largest effect on population size in the short term. However, simulations showed that almost 100% of seedlings or new recruits produced per reproductive adult would have to be destroyed to cause populations to go locally extinct under current environmental conditions. Herbivores or pathogens that decrease survival across all vegetative stages by 12% at Waiakea and 64% at Laupahoehoe were projected to cause the populations to decline. Thus, biocontrol agents that reduce survival of multiple life-history stages rather than seed production should be pursued to control C. hirta in Hawaiian rainforests.  相似文献   
9.
10.
Mitochondrial DNA (mtDNA) sequence variation was examined in Finns, Swedes and Tuscans by PCR amplification and restriction analysis. About 99% of the mtDNAs were subsumed within 10 mtDNA haplogroups (H, I, J, K, M, T, U, V, W, and X) suggesting that the identified haplogroups could encompass virtually all European mtDNAs. Because both hypervariable segments of the mtDNA control region were previously sequenced in the Tuscan samples, the mtDNA haplogroups and control region sequences could be compared. Using a combination of haplogroup-specific restriction site changes and control region nucleotide substitutions, the distribution of the haplogroups was surveyed through the published restriction site polymorphism and control region sequence data of Caucasoids. This supported the conclusion that most haplogroups observed in Europe are Caucasoid-specific, and that at least some of them occur at varying frequencies in different Caucasoid populations. The classification of almost all European mtDNA variation in a number of well defined haplogroups could provide additional insights about the origin and relationships of Caucasoid populations and the process of human colonization of Europe, and is valuable for the definition of the role played by mtDNA backgrounds in the expression of pathological mtDNA mutations  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号